cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341633 a(n) is the cardinality of the central rank of the free distributive lattice on n generators.

This page as a plain text file.
%I A341633 #67 Jul 29 2025 15:37:06
%S A341633 1,2,4,24,621,492288,81203064840
%N A341633 a(n) is the cardinality of the central rank of the free distributive lattice on n generators.
%C A341633 Sequence for 2 <= n <= 5 is given in Church (1940); n = 1 obtained trivially from {} - {{}} - {{}, {1}}; n = 6 and n = 7 obtained from the triangle A269699.
%C A341633 a(n) is also provably the number of downward closed subsets of the powerset of {1,2,3,...,n} which have the cardinality 2^(n-1).
%C A341633 If FD(n) (the free distributive lattice on n generators) is rank unimodal for all n, then a(n) is the largest cardinality of any rank of FD(n).
%C A341633 If FD(n) is rank unimodal and Sperner for all n, then a(n) is the width of FD(n). (Consequences provable, antecedents are open questions - e.g., Stanley (1991))
%C A341633 This sequence is related (at least methodologically) to the n-th Dedekind number (A000372), which is obtained from the cardinality of FD(n).
%C A341633 a(n) is also the number of balanced monotone Boolean functions. - _Aniruddha Biswas_, Nov 22 2024
%H A341633 Bruno L. O. Andreotti, <a href="/A341633/a341633.py.txt">Python program for n = 1 to 6</a>
%H A341633 Aniruddha Biswas and Palash Sarkar, <a href="https://arxiv.org/abs/2304.14069">Counting unate and balanced monotone Boolean functions</a>, arXiv:2304.14069 [math.CO], 2023.
%H A341633 Aniruddha Biswas and Palash Sarkar, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL28/Biswas/biswas6.html">Counting Unate and Monotone Boolean Functions Under Restrictions of Balancedness and Non-Degeneracy</a>, J. Int. Seq. (2025) Vol. 28, Art. No. 25.3.4. See pp. 3, 11-12.
%H A341633 Randolph Church, <a href="https://doi.org/10.1215/S0012-7094-40-00655-X">Numerical analysis of certain free distributive structures</a>, Duke Math. J. 6 (1940). 732--734.
%H A341633 Randolph Church, <a href="/A000372/a000372_3.pdf">Numerical analysis of certain free distributive structures</a>, Duke Math. J. 6 (1940). 732--734.
%H A341633 Richard P. Stanley, <a href="https://doi.org/10.1016/0166-218X(91)90089-F">Some application of algebra to combinatorics</a>, Discrete Applied Mathematics, 34 (1991), 241-277.
%F A341633 a(n) = A269699(n, 2^(n-1)).
%e A341633 a(4)=24 is obtained from the 24 downsets on the 8th and central rank of FD(4), each containing 8 members (enumeration is arbitrary):
%e A341633    1  {{},{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
%e A341633    2  {{},{1},{2},{4},{1,2},{1,4},{2,4},{1,2,4}}
%e A341633    3  {{},{1},{3},{4},{1,3},{1,4},{3,4},{1,3,4}}
%e A341633    4  {{},{2},{3},{4},{2,3},{2,4},{3,4},{2,3,4}}
%e A341633    5  {{},{1},{2},{3},{4},{1,2},{1,3},{2,3}}
%e A341633    6  {{},{1},{2},{3},{4},{1,2},{1,4},{2,4}}
%e A341633    7  {{},{1},{2},{3},{4},{1,3},{1,4},{3,4}}
%e A341633    8  {{},{1},{2},{3},{4},{2,3},{2,4},{3,4}}
%e A341633    9  {{},{1},{2},{3},{4},{1,2},{1,3},{1,4}}
%e A341633   10  {{},{1},{2},{3},{4},{1,2},{2,3},{2,4}}
%e A341633   11  {{},{1},{2},{3},{4},{1,3},{2,3},{3,4}}
%e A341633   12  {{},{1},{2},{3},{4},{1,4},{2,4},{3,4}}
%e A341633   13  {{},{1},{2},{3},{4},{1,2},{2,3},{3,4}}
%e A341633   14  {{},{1},{2},{3},{4},{1,2},{1,4},{3,4}}
%e A341633   15  {{},{1},{2},{3},{4},{1,2},{1,4},{2,3}}
%e A341633   16  {{},{1},{2},{3},{4},{1,2},{1,3},{3,4}}
%e A341633   17  {{},{1},{2},{3},{4},{1,2},{2,4},{3,4}}
%e A341633   18  {{},{1},{2},{3},{4},{1,2},{1,3},{2,4}}
%e A341633   19  {{},{1},{2},{3},{4},{1,3},{1,4},{2,3}}
%e A341633   20  {{},{1},{2},{3},{4},{1,3},{1,4},{2,4}}
%e A341633   21  {{},{1},{2},{3},{4},{1,3},{2,4},{3,4}}
%e A341633   22  {{},{1},{2},{3},{4},{1,3},{2,3},{2,4}}
%e A341633   23  {{},{1},{2},{3},{4},{1,4},{2,3},{3,4}}
%e A341633   24  {{},{1},{2},{3},{4},{1,4},{2,3},{2,4}}
%o A341633 (Python) # See Andreotti link.
%Y A341633 Cf. A000372, A269699, A371722.
%K A341633 nonn,hard,more
%O A341633 1,2
%A A341633 _Bruno L. O. Andreotti_, Feb 16 2021