This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341637 #14 Nov 12 2022 05:25:45 %S A341637 1,6,12,30,30,72,56,138,123,180,132,360,182,336,360,602,306,738,380, %T A341637 900,672,792,552,1656,795,1092,1176,1680,870,2160,992,2538,1584,1836, %U A341637 1680,3690,1406,2280,2184,4140,1722,4032,1892,3960,3690,3312,2256,7224,2835,4770,3672,5460 %N A341637 a(n) = Sum_{d|n} phi(d) * sigma(d) * sigma(n/d). %H A341637 Michael De Vlieger, <a href="/A341637/b341637.txt">Table of n, a(n) for n = 1..10000</a> %F A341637 a(n) = Sum_{k=1..n} sigma(gcd(n,k)) * sigma(n/gcd(n,k)). %F A341637 From _Amiram Eldar_, Nov 12 2022: (Start) %F A341637 Multiplicative with a(p^e) = (p^(2*e+3) - (e+1)*(p^2-1)*p^e - p)/((p-1)^2*(p+1)). %F A341637 Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(2)*zeta(3)/3) * Product_{p prime} (1 - 1/(p^2*(p+1))) = (1/3) * A183699 * A330523 = 0.581007... . (End) %t A341637 Table[Sum[EulerPhi[d] DivisorSigma[1, d] DivisorSigma[1, n/d], {d, Divisors[n]}], {n, 52}] %t A341637 Table[Sum[DivisorSigma[1, GCD[n, k]] DivisorSigma[1, n/GCD[n, k]], {k, n}], {n, 52}] %t A341637 f[p_, e_] := (p^(2*e + 3) - (e + 1)*(p^2 - 1)*p^e - p)/((p - 1)^2*(p + 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* _Amiram Eldar_, Nov 12 2022 *) %o A341637 (PARI) a(n) = sumdiv(n, d, eulerphi(d)*sigma(d)*sigma(n/d)); \\ _Michel Marcus_, Feb 17 2021 %Y A341637 Cf. A000010, A000203, A000385, A034761, A038040, A062354, A062952, A183699, A330523. %K A341637 nonn,mult %O A341637 1,2 %A A341637 _Ilya Gutkovskiy_, Feb 16 2021