cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341643 The unique strictly superior prime divisor of each number that has one.

This page as a plain text file.
%I A341643 #11 Nov 01 2024 05:16:16
%S A341643 2,3,5,3,7,5,11,13,7,5,17,19,5,7,11,23,13,7,29,31,11,17,7,37,19,13,41,
%T A341643 7,43,11,23,47,17,13,53,11,19,29,59,61,31,13,11,67,17,23,71,73,37,19,
%U A341643 11,13,79,41,83,17,43,29,11,89,13,23,31,47,19,97,11,101
%N A341643 The unique strictly superior prime divisor of each number that has one.
%C A341643 We define a divisor d|n to be strictly superior if d > n/d. Strictly superior divisors are counted by A056924 and listed by A341673.
%H A341643 Amiram Eldar, <a href="/A341643/b341643.txt">Table of n, a(n) for n = 1..10000</a>
%e A341643 The strictly superior divisors of 15 are {5,15}, and A064052(10) = 15, so a(10) = 5.
%t A341643 Join@@Table[Select[Divisors[n],PrimeQ[#]&&#>n/#&],{n,100}]
%o A341643 (PARI) lista(nmax) = {my(p); for(n = 1, nmax, p = select(x -> (x^2 > n), factor(n)[, 1]); if(#p == 1, print1(p[1], ", ")));} \\ _Amiram Eldar_, Nov 01 2024
%Y A341643 The inferior version is (largest inferior prime divisor) is A217581.
%Y A341643 These divisors (strictly superior prime) are counted by A341642.
%Y A341643 a(n) is the unique prime divisor in row n of A341673, for each n in A064052.
%Y A341643 The weak version is A341676.
%Y A341643 A038548 counts superior (or inferior) divisors.
%Y A341643 A048098 lists numbers without a strictly superior prime divisor.
%Y A341643 A056924 counts strictly superior (or strictly inferior) divisors.
%Y A341643 A063538/A063539 have/lack a superior prime divisors.
%Y A341643 A140271 selects the smallest strictly superior divisor.
%Y A341643 A207375 lists central divisors.
%Y A341643 A238535 adds up strictly superior divisors.
%Y A341643 A341591 counts superior prime divisors.
%Y A341643 - Inferior: A033676, A063962, A066839, A069288, A161906, A333749, A333750.
%Y A341643 - Superior: A033677, A051283, A059172, A070038, A116882, A116883, A161908, A341592, A341593, A341675.
%Y A341643 - Strictly Inferior: A060775, A333805, A333806, A341596, A341674.
%Y A341643 - Strictly Superior: A341594, A341595, A341644, A341645, A341646.
%Y A341643 Cf. A000005, A001055, A001221, A001248, A001414, A006530, A020639.
%K A341643 nonn
%O A341643 1,1
%A A341643 _Gus Wiseman_, Feb 20 2021