This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341644 #13 Nov 01 2024 05:16:31 %S A341644 0,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,2,1,1,0,1,3,1,1, %T A341644 1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,0,1,1,1,3,1,1,1,1, %U A341644 1,0,1,1,1,1,1,1,1,1,1,1,2,1,1,0,1,1,1 %N A341644 Number of strictly superior prime-power divisors of n. %C A341644 We define a divisor d|n to be strictly superior if d > n/d. Strictly superior divisors are counted by A056924 and listed by A341673. %H A341644 Amiram Eldar, <a href="/A341644/b341644.txt">Table of n, a(n) for n = 1..10000</a> %e A341644 The strictly superior prime power divisors of random selected n: %e A341644 n = 768 2048 5103 6144 8192 8722 9433 9984 %e A341644 ---------------------------------------------- %e A341644 32 64 81 128 128 9433 128 %e A341644 64 128 243 256 256 256 %e A341644 128 256 729 512 512 %e A341644 256 512 1024 1024 %e A341644 1024 2048 2048 %e A341644 2048 4096 %e A341644 8192 %t A341644 Table[Length[Select[Divisors[n],PrimePowerQ[#]&&#>n/#&]],{n,100}] %o A341644 (PARI) a(n) = sumdiv(n, d, d^2 > n && isprimepower(d)); \\ _Amiram Eldar_, Nov 01 2024 %Y A341644 Positions of zeros (after the first) are A051283. %Y A341644 The inferior version is A333750. %Y A341644 Dominated by A341593 (the weakly superior version). %Y A341644 The version for odd instead of prime divisors is A341594. %Y A341644 The version for squarefree instead of prime divisors is A341595. %Y A341644 The version for prime instead of prime-power divisors is A341642. %Y A341644 The strictly inferior version is A341677. %Y A341644 A000961 lists prime powers. %Y A341644 A001221 counts prime divisors, with sum A001414. %Y A341644 A001222 counts prime-power divisors. %Y A341644 A005117 lists squarefree numbers. %Y A341644 A140271 selects the smallest strictly superior divisor. %Y A341644 A038548 counts superior (or inferior) divisors. %Y A341644 A056924 counts strictly superior (or strictly inferior) divisors. %Y A341644 A207375 list central divisors. %Y A341644 A341673 lists strictly superior divisors. %Y A341644 - Inferior: A033676, A063962, A066839, A069288, A161906, A217581, A333749. %Y A341644 - Superior: A033677, A059172, A063538, A063539, A070038, A072500, A116882, A116883, A161908, A341591, A341592, A341675, A341676. %Y A341644 - Strictly Inferior: A060775, A070039, A333805, A333806, A341596, A341674. %Y A341644 - Strictly Superior: A048098, A064052, A238535, A341643, A341646. %Y A341644 Cf. A000005, A000203, A001248, A006530, A020639, A112798. %K A341644 nonn %O A341644 1,8 %A A341644 _Gus Wiseman_, Feb 22 2021