A341646 Numbers with a strictly superior squarefree divisor.
2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1
Keywords
Examples
60 has three strictly superior squarefree divisors {10,15,30} so 60 is in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
The version for prime instead of squarefree divisors is A064052.
The version for prime-power instead of squarefree divisors is the complement of A051283.
The weakly superior version is the complement of A059172.
The version for odd instead of squarefree divisors is A116883.
These are the positions of nonzero terms in A341595.
The complement is A341645.
A005117 lists squarefree numbers.
A038548 counts superior (or inferior) divisors.
A056924 counts strictly superior (or strictly inferior) divisors.
A140271 selects the smallest strictly superior divisor.
A207375 list central divisors.
A341673 lists strictly superior divisors.
- Superior: A033677, A063538, A063539, A070038, A072500, A116882, A161908, A341591, A341592, A341593, A341675, A341676.
Subsequence of A007916.
Programs
-
Maple
isA341646 := proc(n) local d ; for d in numtheory[divisors](n) do if d>n/d then if issqrfree(d) then return true ; end if; end if; end do: false ; end proc: for n from 2 to 100 do if isA341646(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Jul 07 2023
-
Mathematica
Select[Range[100],Function[n,Select[Divisors[n],SquareFreeQ[#]&>n/#&]!={}]]
-
PARI
is(n) = fordiv(n, d, if(d^2 > n && issquarefree(d), return(1))); 0; \\ Amiram Eldar, Nov 01 2024
Comments