A341649 Integers k such that Z[sqrt(k)] = Z[x]/(x^2 - k) is a unique factorization domain.
-2, -1, 2, 3, 6, 7, 11, 14, 19, 22, 23, 31, 38, 43, 46, 47, 59, 62, 67, 71, 83, 86, 94, 103, 107, 118, 127, 131, 134, 139, 151, 158, 163, 166, 167, 179, 191, 199, 206, 211, 214, 227, 239, 251, 262, 263, 271, 278, 283, 302, 307, 311, 331, 334, 347, 358, 367, 379
Offset: 1
Keywords
Examples
Z[sqrt(-1)] = Z[i] is the ring of Gaussian integers, which is a unique factorization domain.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
- Ezra Brown, Class numbers of real quadratic number fields, Trans. Amer. Math. Soc. 190 (1974), 99-107.
- Mathematics Stack Exchange, Unique factorization domain that is not a Principal ideal domain
- Eric Weisstein's World of Mathematics, Class Number
- Index entries for sequences related to quadratic fields
Programs
-
PARI
isA341649(n) = my(D=4*n); isfundamental(D) && quadclassunit(D)[1] == 1
Comments