cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341657 a(n) is the number of divisors of prime(n)^6 - 1.

This page as a plain text file.
%I A341657 #16 Mar 04 2021 01:43:47
%S A341657 6,16,48,60,192,96,192,256,360,384,504,512,240,384,576,320,384,768,
%T A341657 576,320,320,864,384,640,504,1152,960,1280,1280,576,576,768,960,768,
%U A341657 1152,720,384,768,240,768,2048,2048,2304,384,1536,1920,3072,672,1152,1536,1280
%N A341657 a(n) is the number of divisors of prime(n)^6 - 1.
%C A341657 a(n) >= A309906(6) = 384 for n > 39.
%C A341657 p^6 - 1 = A*B*C*D where A=(p-1), B=(p+1), C=(p^2 - p + 1), and D=(p^2 + p + 1), and A, B, C, and D are pairwise coprime except that 2 may divide both A and B and that 3 may divide both A and D or both B and C. For prime p > 7, A and B are consecutive even numbers (so one of them is divisible by 4), so 8|AB; 3 divides both A and D or both B and C, so 9|ABCD; and 7 divides exactly one of A, B, C, and D. Thus, 8*9*7 = 2^3 * 3^2 * 7^1 = 504|ABCD = p^6 - 1. Generally, for sufficiently large primes p, the factors of ABCD, counted with multiplicity, include at least three 2's, two 3's, one 7, and at least four distinct larger primes, so tau(ABCD) = A000005(ABCD) >= (3+1)*(2+1)*(1+1)*(1+1)^4 = 384. (For sufficiently large primes p such that one of A, B, C, or D has no prime factors other than 2, 3, or 7, ABCD will still have at least four distinct prime factors > 7 unless the other three of A, B, C, and D have only one such larger prime factor each; in every such case where p > 167 (e.g., at p = 193, 383, 1373, and 6047), even though ABCD has only 3 distinct prime factors > 7, the multiplicities of 2, 3, and 7 in ABCD are collectively large enough that ABCD nevertheless has at least 384 divisors.)
%C A341657 The largest prime p at which tau(p^6 - 1) < 384 is p = prime(39) = 167: the prime factorizations of A, B, C, and D are A = 166 = 2 * 83, B = 168 = 2^3 * 3 * 7, C = 27723 = 3 * 9241, and D = 28057, so p^6 - 1 = ABCD = 2^4 * 3^2 * 7 * 83 * 9241 * 28057, and thus tau(p^6 - 1) = (4+1)*(2+1)*(1+1)*(1+1)*(1+1)*(1+1) = 5*3*2*2*2*2 = 240. (Note that the prime factorization of 167^6 - 1 contains four 2's, two 3's, one 7, and only 3 distinct primes > 7; B = 168 is 7-smooth.)
%F A341657 a(n) = A000005(A000040(n)^6 - 1).
%e A341657    n  prime(n)    factorization of prime(n)^6 - 1      a(n)
%e A341657   --  --------  -----------------------------------    ----
%e A341657    1      2           3^2     * 7                         6
%e A341657    2      3     2^3           * 7   * 13                 16
%e A341657    3      5     2^3 * 3^2     * 7   * 31                 48
%e A341657    4      7     2^4 * 3^2           * 19*43              60
%e A341657    5     11     2^3 * 3^2 * 5 * 7   * 19*37             192
%e A341657    6     13     2^3 * 3^2     * 7   * 61*157             96
%e A341657    7     17     2^5 * 3^3     * 7   * 13*307            192
%e A341657    8     19     2^3 * 3^3 * 5 * 7^3 * 127               256
%e A341657    9     23     2^4 * 3^2     * 7   * 11*13^2*79        360
%e A341657   10     29     2^3 * 3^2 * 5 * 7   * 13*67*271         384
%e A341657   11     31     2^6 * 3^2 * 5 * 7^2 * 19*331            504
%e A341657   12     37     2^3 * 3^3     * 7   * 19*31*43*67       512
%e A341657   13     41     2^4 * 3^2 * 5 * 7   * 547*1723          240
%e A341657   14     43     2^3 * 3^2     * 7   * 11*13*139*631     384
%e A341657   15     47     2^5 * 3^2     * 7   * 23*37*61*103      576
%e A341657   16     53     2^3 * 3^4     * 7   * 13*409*919        320
%e A341657   17     59     2^3 * 3^2 * 5 * 7   * 29*163*3541       384
%e A341657   18     61     2^3 * 3^2 * 5 * 7   * 13*31*97*523      768
%e A341657   19     67     2^3 * 3^2     * 7^2 * 11*17*31*4423     576
%e A341657   20     71     2^4 * 3^3 * 5 * 7   * 1657*5113         320
%e A341657   21     73     2^4 * 3^3     * 7   * 37*751*1801       320
%e A341657   ...
%e A341657   39    167     2^4 * 3^2     * 7   * 83*9241*28057     240
%t A341657 a[n_] := DivisorSigma[0, Prime[n]^6 - 1]; Array[a, 50] (* _Amiram Eldar_, Feb 26 2021 *)
%o A341657 (PARI) a(n) = numdiv(prime(n)^6-1); \\ _Michel Marcus_, Feb 26 2021
%Y A341657 Cf. A000005, A000040, A309906, A341655, A341656.
%K A341657 nonn
%O A341657 1,1
%A A341657 _Jon E. Schoenfield_, Feb 25 2021