This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341659 #20 Apr 17 2025 18:42:00 %S A341659 59,167,383,839,1487,4259,5087,6047,6599,6719,8543,8963,9743,12227, %T A341659 12647,13163,14087,14867,18947,20123,22643,23099,23159,24083,24239, %U A341659 24659,25583,27107,27299,30203,30803,32507,34319,37463,37799,38603,41879,42839,44519,44687 %N A341659 Primes p such that p^3 - 1 has 8 divisors. %C A341659 Intersection of A005385 (Safe primes p: (p-1)/2 is also prime) and A053182 (Primes p such that p^2 + p + 1 is prime). %C A341659 For each term p, p^3 - 1 = (p-1)*(p^2 + p + 1) is a number of the form 2*q*r (where q and r are distinct primes): p-1 = 2*q and p^2 + p + 1 = r. %C A341659 Conjecture: sequence is infinite. %H A341659 David A. Corneth, <a href="/A341659/b341659.txt">Table of n, a(n) for n = 1..6183</a> %e A341659 p = factorization %e A341659 n a(n) p^3 - 1 of (p^3 - 1) %e A341659 - ---- ------------ ------------------- %e A341659 1 59 205378 2 * 29 * 3541 %e A341659 2 167 4657462 2 * 83 * 28057 %e A341659 3 383 56181886 2 * 191 * 147073 %e A341659 4 839 590589718 2 * 419 * 704761 %e A341659 5 1487 3288008302 2 * 743 * 2212657 %e A341659 6 4259 77254345978 2 * 2129 * 18143341 %e A341659 7 5087 131639193502 2 * 2543 * 25882657 %e A341659 8 6047 221115865822 2 * 3023 * 36572257 %e A341659 9 6599 287365339798 2 * 3299 * 43553401 %t A341659 Select[Range[50000], PrimeQ[#] && DivisorSigma[0, #^3 - 1] == 8 &] (* _Amiram Eldar_, Feb 26 2021 *) %t A341659 Select[Prime[Range[5000]],DivisorSigma[0,#^3-1]==8&] (* _Harvey P. Dale_, Apr 17 2025 *) %o A341659 (PARI) isok(p) = isprime(p) && (numdiv(p^3-1) == 8); \\ _Michel Marcus_, Feb 26 2021 %Y A341659 Cf. A000005, A000040, A005385, A053182, A309906. %K A341659 nonn %O A341659 1,1 %A A341659 _Jon E. Schoenfield_, Feb 26 2021