cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341660 Primes p such that p^2 - 1 has fewer than 32 divisors.

This page as a plain text file.
%I A341660 #12 Mar 04 2021 01:43:25
%S A341660 2,3,5,7,11,13,17,19,23,31,37,47,73
%N A341660 Primes p such that p^2 - 1 has fewer than 32 divisors.
%C A341660 For all primes p > 73, p^2 - 1 has at least A309906(2)=32 divisors.
%e A341660       p =            factorization
%e A341660    n  a(n)  p^2 - 1    of p^2 - 1    tau(p^2 - 1)
%e A341660   --  ----  -------  --------------  ------------
%e A341660    1    2        3   3                     2
%e A341660    2    3        8   2^3                   4
%e A341660    3    5       24   2^3 * 3               8
%e A341660    4    7       48   2^4 * 3              10
%e A341660    5   11      120   2^3 * 3 * 5          16
%e A341660    6   13      168   2^3 * 3 * 7          16
%e A341660    7   17      288   2^5 * 3^2            18
%e A341660    8   19      360   2^3 * 3^2 * 5        24
%e A341660    9   23      528   2^4 * 3 * 11         20
%e A341660   10   31      960   2^6 * 3 * 5          28
%e A341660   11   37     1368   2^3 * 3^2 * 19       24
%e A341660   12   47     2208   2^5 * 3 * 23         24
%e A341660   13   73     5328   2^4 * 3^2 * 37       30
%t A341660 Select[Range[100], PrimeQ[#] && DivisorSigma[0, #^2 - 1] < 32 &] (* _Amiram Eldar_, Feb 26 2021 *)
%Y A341660 Cf. A000005, A000040, A309906, A341655, A341658.
%K A341660 nonn,fini,full
%O A341660 1,1
%A A341660 _Jon E. Schoenfield_, Feb 26 2021