cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341662 Primes p such that p^4 - 1 has 160 divisors.

This page as a plain text file.
%I A341662 #12 Mar 04 2021 01:43:28
%S A341662 53,67,131,139,227,277,283,347,383,641,653,661,821,877,997,1069,1181,
%T A341662 1213,1811,2083,2389,2459,2819,3803,4021,4253,4723,6619,6829,7213,
%U A341662 7933,8069,9013,9187,10589,11261,16139,17827,18133,18587,19309,19541,20477,20947
%N A341662 Primes p such that p^4 - 1 has 160 divisors.
%C A341662 Conjecture: sequence is infinite.
%C A341662 For every term p, p^4 - 1 is of the form 2^4 * 3 * 5 * q * r * s, where q, r, and s are distinct primes > 5, with three exceptions: p = 53, 383, and 641 (see Example section).
%e A341662       p =
%e A341662    n  a(n)     p^4 - 1    factorization of p^4 - 1
%e A341662   --  ----  ------------  -------------------------------
%e A341662    1    53       7890480  2^4 * 3^3 * 5 * 13 * 281
%e A341662    2    67      20151120  2^4 * 3 * 5 * 11 * 17 * 449
%e A341662    3   131     294499920  2^4 * 3 * 5 * 11 * 13 * 8581
%e A341662    4   139     373301040  2^4 * 3 * 5 * 7 * 23 * 9661
%e A341662    5   227    2655237840  2^4 * 3 * 5 * 19 * 113 * 5153
%e A341662    6   277    5887339440  2^4 * 3 * 5 * 23 * 139 * 7673
%e A341662    7   283    6414247920  2^4 * 3 * 5 * 47 * 71 * 8009
%e A341662    8   347   14498327280  2^4 * 3 * 5 * 29 * 173 * 12041
%e A341662    9   383   21517662720  2^9 * 3 * 5 * 191 * 14669
%e A341662   10   641  168823196160  2^9 * 3 * 5 * 107 * 205441
%e A341662   11   653  181824635280  2^4 * 3 * 5 * 109 * 163 * 42641
%t A341662 Select[Range[21000], PrimeQ[#] && DivisorSigma[0, #^4 - 1] == 160 &] (* _Amiram Eldar_, Feb 26 2021 *)
%o A341662 (PARI) isok(p) = isprime(p) && (numdiv(p^4-1) == 160); \\ _Michel Marcus_, Feb 26 2021
%Y A341662 Cf. A000005, A000040, A309906, A341656, A341661.
%K A341662 nonn
%O A341662 1,1
%A A341662 _Jon E. Schoenfield_, Feb 26 2021