cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341665 Primes p such that p^5 - 1 has 8 divisors.

This page as a plain text file.
%I A341665 #11 Mar 04 2021 01:42:42
%S A341665 7,23,83,227,263,359,479,503,563,1187,2999,3803,4703,4787,4919,5939,
%T A341665 6599,8819,10667,14159,16139,16187,18119,21227,22943,25847,26003,
%U A341665 26903,27827,29123,29339,29663,36263,43403,44519,44963,46199,47123,48947,49103,49499
%N A341665 Primes p such that p^5 - 1 has 8 divisors.
%C A341665 For each term p, p^5 - 1 = (p-1)*(p^4 + p^3 + p^2 + p + 1) is a number of the form 2*q*r (where q and r are distinct primes): p-1 = 2*q and p^4 + p^3 + p^2 + p + 1 = r.
%C A341665 Conjecture: sequence is infinite.
%e A341665      p =                       factorization
%e A341665   n  a(n)      p^5 - 1          of (p^5 - 1)
%e A341665   -  ----  --------------  ---------------------
%e A341665   1     7           16806  2 *   3 *        2801
%e A341665   2    23         6436342  2 *  11 *      292561
%e A341665   3    83      3939040642  2 *  41 *    48037081
%e A341665   4   227    602738989906  2 * 113 *  2666986681
%e A341665   5   263   1258284197542  2 * 131 *  4802611441
%e A341665   6   359   5963102065798  2 * 179 * 16656709681
%e A341665   7   479  25216079618398  2 * 239 * 52753304641
%e A341665   8   503  32198817702742  2 * 251 * 64141071121
%e A341665   ...
%t A341665 Select[Range[50000], PrimeQ[#] && DivisorSigma[0, #^5 - 1] == 8 &] (* _Amiram Eldar_, Feb 26 2021 *)
%o A341665 (PARI) isok(p) = isprime(p) && (numdiv(p^5-1) == 8); \\ _Michel Marcus_, Feb 26 2021
%Y A341665 Cf. A000005, A000040, A309906, A341664.
%K A341665 nonn
%O A341665 1,1
%A A341665 _Jon E. Schoenfield_, Feb 26 2021