This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341666 #14 Mar 04 2021 01:43:09 %S A341666 29,43,59,83,157,193,317,1093,1373,1523,2803,3557,3677,3733,12227, %T A341666 13093,20507,25933,28163,29243,32443,33493,38603,53917,100523,109883, %U A341666 122117,134363,140197,190573,236723,242773,249397,256757,258403,274237,299723,333283 %N A341666 Primes p such that p^6 - 1 has 384 divisors. %C A341666 Conjecture: sequence is infinite. %C A341666 For every term p, p^6 - 1 is of the form 2^3 * 3^2 * 7 * q * r * s * t, where q, r, s, and t are distinct primes > 7, with four exceptions: p = 29, 59, 193, and 1373 (see Example section). %e A341666 p = %e A341666 n a(n) factorization of p^6 - 1 %e A341666 - ---- ------------------------------------------------------ %e A341666 1 29 2^3 * 3^2 * 5 * 7 * 13 * 67 * 271 %e A341666 2 43 2^3 * 3^2 * 7 * 11 * 13 * 139 * 631 %e A341666 3 59 2^3 * 3^2 * 5 * 7 * 29 * 163 * 3541 %e A341666 4 83 2^3 * 3^2 * 7 * 19 * 41 * 367 * 2269 %e A341666 5 157 2^3 * 3^2 * 7 * 13 * 79 * 3499 * 8269 %e A341666 6 193 2^7 * 3^2 * 7 * 97 * 1783 * 37057 %e A341666 7 317 2^3 * 3^2 * 7 * 53 * 79 * 14401 * 33391 %e A341666 8 1093 2^3 * 3^2 * 7 * 13 * 547 * 398581 * 1193557 %e A341666 9 1373 2^3 * 3^2 * 7^3 * 229 * 627919 * 1886503 %t A341666 Select[Range[350000], PrimeQ[#] && DivisorSigma[0, #^6 - 1] == 384 &] (* _Amiram Eldar_, Feb 27 2021 *) %o A341666 (PARI) isok(p) = isprime(p) && (numdiv(p^6-1) == 384); \\ _Michel Marcus_, Feb 27 2021 %Y A341666 Cf. A000005, A000040, A309906, A341657, A341667. %K A341666 nonn %O A341666 1,1 %A A341666 _Jon E. Schoenfield_, Feb 26 2021