This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341667 #13 Mar 04 2021 01:42:34 %S A341667 2,3,5,7,11,13,17,19,23,41,53,71,73,167 %N A341667 Primes p such that p^6 - 1 has fewer than 384 divisors. %C A341667 For all primes p > 167, p^6 - 1 has at least 384 divisors. %e A341667 p = %e A341667 n a(n) factorization of p^6 - 1 tau(p^6 - 1) %e A341667 -- ---- --------------------------------- ------------ %e A341667 1 2 3^2 * 7 6 %e A341667 2 3 2^3 * 7 * 13 16 %e A341667 3 5 2^3 * 3^2 * 7 * 31 48 %e A341667 4 7 2^4 * 3^2 * 19 * 43 60 %e A341667 5 11 2^3 * 3^2 * 5 * 7 * 19 * 37 192 %e A341667 6 13 2^3 * 3^2 * 7 * 61 * 157 96 %e A341667 7 17 2^5 * 3^3 * 7 * 13 * 307 192 %e A341667 8 19 2^3 * 3^3 * 5 * 7^3 * 127 256 %e A341667 9 23 2^4 * 3^2 * 7 * 11 * 13^2 * 79 360 %e A341667 10 41 2^4 * 3^2 * 5 * 7 * 547 * 1723 240 %e A341667 11 53 2^3 * 3^4 * 7 * 13 * 409 * 919 320 %e A341667 12 71 2^4 * 3^3 * 5 * 7 * 1657 * 5113 320 %e A341667 13 73 2^4 * 3^3 * 7 * 37 * 751 * 1801 320 %e A341667 14 167 2^4 * 3^2 * 7 * 83 * 9241 * 28057 240 %t A341667 Select[Range[200], PrimeQ[#] && DivisorSigma[0, #^6 - 1] < 384 &] (* _Amiram Eldar_, Feb 27 2021 *) %Y A341667 Cf. A000005, A000040, A309906, A341657, A341666. %K A341667 nonn,fini,full %O A341667 1,1 %A A341667 _Jon E. Schoenfield_, Feb 26 2021