cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341669 Primes p such that p^7 - 1 has 8 divisors.

This page as a plain text file.
%I A341669 #13 Mar 04 2021 01:42:28
%S A341669 863,1439,2039,3167,3803,4799,10559,11423,14087,14207,15287,15803,
%T A341669 16139,18743,20663,21059,21179,22343,25307,25919,26459,29483,29759,
%U A341669 30803,32507,32987,33107,34319,34367,35879,43427,45887,46559,46643,46919,54959,57119,57587
%N A341669 Primes p such that p^7 - 1 has 8 divisors.
%C A341669 For each term p, p^7 - 1 = (p-1)*(p^6 + p^5 + p^4 + p^3 + p^2 + p + 1) is a number of the form 2*q*r (where q and r are distinct primes): p-1 = 2*q and p^6 + p^5 + p^4 + p^3 + p^2 + p + 1 = r.
%C A341669 Conjecture: sequence is infinite.
%e A341669       p =
%e A341669   n   a(n)        factorization of p^7 - 1
%e A341669   -  -----  ------------------------------------
%e A341669   1    863  2 *  431 *        413588356833933793
%e A341669   2   1439  2 *  719 *       8885189025331426081
%e A341669   3   2039  2 * 1019 *      71897932302115976281
%e A341669   4   3167  2 * 1583 *    1009312223899992366817
%e A341669   5   3803  2 * 1901 *    3026022586778671180093
%e A341669   6   4799  2 * 2399 *   12217856103420111345601
%e A341669   7  10559  2 * 5279 * 1386046726502834819142721
%e A341669   8  11423  2 * 5711 * 2221872233870122705845793
%e A341669   9  14087  2 * 7043 * 7815232779386331437540137
%t A341669 Select[Range[60000], PrimeQ[#] && DivisorSigma[0, #^7 - 1] == 8 &] (* _Amiram Eldar_, Feb 27 2021 *)
%o A341669 (PARI) isok(p) = isprime(p) && (numdiv(p^7-1) == 8); \\ _Michel Marcus_, Feb 27 2021
%Y A341669 Cf. A000005, A000040, A309906, A341668.
%K A341669 nonn
%O A341669 1,1
%A A341669 _Jon E. Schoenfield_, Feb 26 2021