cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341676 The unique superior prime divisor of each number that has one.

This page as a plain text file.
%I A341676 #14 Nov 01 2024 05:16:48
%S A341676 2,3,2,5,3,7,3,5,11,13,7,5,17,19,5,7,11,23,5,13,7,29,31,11,17,7,37,19,
%T A341676 13,41,7,43,11,23,47,7,17,13,53,11,19,29,59,61,31,13,11,67,17,23,71,
%U A341676 73,37,19,11,13,79,41,83,17,43,29,11,89,13,23,31,47,19
%N A341676 The unique superior prime divisor of each number that has one.
%C A341676 We define a divisor d|n to be superior if d >= n/d. Superior divisors are counted by A038548 and listed by A161908. Numbers with a superior prime divisor are listed by A063538.
%H A341676 Amiram Eldar, <a href="/A341676/b341676.txt">Table of n, a(n) for n = 1..10000</a>
%e A341676 The sequence of superior prime divisors begins: {}, {2}, {3}, {2}, {5}, {3}, {7}, {}, {3}, {5}, {11}, {}, {13}, {7}, {5}, {}, {17}, {}, {19}, {5}, ...
%t A341676 Join@@Table[Select[Divisors[n],PrimeQ[#]&&#>=n/#&],{n,100}]
%o A341676 (PARI) lista(nmax) = {my(p); for(n = 1, nmax, p = select(x -> (x^2 >= n), factor(n)[, 1]); if(#p == 1, print1(p[1], ", ")));} \\ _Amiram Eldar_, Nov 01 2024
%Y A341676 Inferior versions are A107286 (smallest), A217581 (largest), A056608.
%Y A341676 These divisors (superior prime) are counted by A341591.
%Y A341676 The strictly superior version is A341643.
%Y A341676 A001221 counts prime divisors, with sum A001414.
%Y A341676 A033676 selects the greatest inferior divisor.
%Y A341676 A033677 selects the smallest superior divisor.
%Y A341676 A038548 counts superior (or inferior) divisors.
%Y A341676 A056924 counts strictly superior (or strictly inferior) divisors.
%Y A341676 A060775 selects the greatest strictly inferior divisor.
%Y A341676 A063538/A063539 have/lack a superior prime divisor.
%Y A341676 A070038 adds up superior divisors.
%Y A341676 A140271 selects the smallest strictly superior divisor.
%Y A341676 A161908 lists superior divisors.
%Y A341676 A207375 lists central divisors.
%Y A341676 - Inferior: A063962, A066839, A069288, A161906, A333749, A333750.
%Y A341676 - Superior: A051283, A059172, A063539, A070038, A116882, A341592, A341593.
%Y A341676 - Strictly Inferior: A070039, A333805, A333806, A341596, A341674, A341677.
%Y A341676 - Strictly Superior: A048098, A064052, A238535, A341594, A341595, A341642, A341643, A341644, A341645, A341646, A341673.
%Y A341676 Cf. A000005, A000203, A001222, A001248, A006530, A020639, A112798.
%K A341676 nonn
%O A341676 1,1
%A A341676 _Gus Wiseman_, Feb 23 2021