This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341677 #12 Nov 01 2024 05:14:21 %S A341677 0,0,0,0,0,1,0,1,0,1,0,2,0,1,1,1,0,2,0,2,1,1,0,3,0,1,1,2,0,3,0,2,1,1, %T A341677 1,3,0,1,1,3,0,2,0,2,2,1,0,3,0,2,1,2,0,2,1,3,1,1,0,4,0,1,2,2,1,2,0,2, %U A341677 1,3,0,4,0,1,2,2,1,2,0,4,1,1,0,4,1,1,1 %N A341677 Number of strictly inferior prime-power divisors of n. %C A341677 We define a divisor d|n to be strictly inferior if d < n/d. Strictly inferior divisors are counted by A056924 and listed by A341674. %H A341677 Amiram Eldar, <a href="/A341677/b341677.txt">Table of n, a(n) for n = 1..10000</a> %e A341677 The strictly inferior prime-power divisors of n!: %e A341677 n = 1 2 6 24 120 720 5040 40320 %e A341677 ---------------------------------- %e A341677 . . 2 2 2 2 2 2 %e A341677 3 3 3 3 3 %e A341677 4 4 4 4 4 %e A341677 5 5 5 5 %e A341677 8 8 7 7 %e A341677 9 8 8 %e A341677 16 9 9 %e A341677 16 16 %e A341677 32 %e A341677 64 %e A341677 128 %t A341677 Table[Length[Select[Divisors[n],PrimePowerQ[#]&&#<n/#&]],{n,100}] %o A341677 (PARI) a(n) = sumdiv(n, d, d^2 < n && isprimepower(d)); \\ _Amiram Eldar_, Nov 01 2024 %Y A341677 Positions of zeros are A166684. %Y A341677 The weakly inferior version is A333750. %Y A341677 The version for odd instead of prime-power divisors is A333805. %Y A341677 The version for prime instead of prime-power divisors is A333806. %Y A341677 The weakly superior version is A341593. %Y A341677 The version for squarefree instead of prime-power divisors is A341596. %Y A341677 The strictly superior version is A341644. %Y A341677 A000961 lists prime powers. %Y A341677 A001221 counts prime divisors, with sum A001414. %Y A341677 A001222 counts prime-power divisors. %Y A341677 A005117 lists squarefree numbers. %Y A341677 A038548 counts superior (or inferior) divisors. %Y A341677 A056924 counts strictly superior (or strictly inferior) divisors. %Y A341677 A207375 lists central divisors. %Y A341677 - Inferior: A033676, A063962, A066839, A069288, A161906, A217581, A333749. %Y A341677 - Superior: A033677, A051283, A059172, A063538, A063539, A070038, A116882, A116883, A161908, A341591, A341592, A341676. %Y A341677 - Strictly Inferior: A060775, A070039, A341674. %Y A341677 - Strictly Superior: A048098, A064052, A140271, A238535, A341594, A341595, A341642, A341643, A341645, A341646, A341673. %Y A341677 Cf. A000005, A000203, A000430, A001248, A006530, A020639. %K A341677 nonn %O A341677 1,12 %A A341677 _Gus Wiseman_, Feb 23 2021