This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341683 #10 Feb 19 2021 03:38:25 %S A341683 0,6,48,97,440,14846,31653,31653,1678739,1678739,122739560,1535115805, %T A341683 3512442548,58877591352,155766601759,2190435820306,30675804879964, %U A341683 97141666019166,97141666019166,3353968861840064,48949549603332636,288326348496168639 %N A341683 Successive approximations up to 7^n for the 7-adic integer Sum_{k>=0} k!. %C A341683 a(n) == Sum_{k>=0} k! (mod 7^n). Since k! mod 7^n is eventually zero, a(n) is well-defined. %C A341683 In general, for every prime p, the p-adic integer x = Sum_{k>=0} k! is well-defined. To find the approximation up to p^n (n > 0) for x, it is enough to add k! for 0 <= k <= m and then find the remainder of the sum modulo p^n, where m = (p - 1)*(n + floor(log_p((p-1)*n))). This is because p^n divides (m+1)! %H A341683 Jianing Song, <a href="/A341683/b341683.txt">Table of n, a(n) for n = 0..1000</a> %F A341683 For n > 0, a(n) = (Sum_{k=0..m} k!) mod 7^n, where m = 6*(n + floor(log_7(6*n))). %e A341683 For n = 7, since 7^7 divides 49!, we have a(7) = (Sum_{k=0..48} k!) mod 7^7 = 31653. %e A341683 For n = 55, since 7^55 divides 343!, we have a(55) = (Sum_{k=0..342} k!) mod 7^55 = 7563765912082524448071111141811678897409320968. %o A341683 (PARI) a(n) = my(p=7); if(n==0, 0, lift(sum(k=0, (p-1)*(n+logint((p-1)*n, p)), Mod(k!, p^n)))) %Y A341683 Cf. A341687 (digits of Sum_{k>=0} k!). %Y A341683 Successive approximations for the p-adic integer Sum_{k>=0} k!: A341680 (p=2), A341681 (p=3), A341682 (p=5), this sequence (p=7). %Y A341683 Cf. A020646 (least positive integer k for which 7^n divides k!). %K A341683 nonn %O A341683 0,2 %A A341683 _Jianing Song_, Feb 17 2021