cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341694 Square array T(n, k) read by antidiagonals upwards, n, k > 0: T(n, k) = A227736(n, k) for k = 1..A005811(n), and T(n, k) = T(n, k - A005811(n)) + ... + T(n, k-1) for k > A005811(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 3, 1, 1, 1, 3, 2, 5, 1, 3, 2, 1, 4, 2, 8, 1, 3, 3, 3, 3, 7, 2, 13, 1, 1, 1, 3, 5, 5, 11, 2, 21, 1, 1, 2, 4, 3, 8, 9, 18, 2, 34, 1, 2, 1, 1, 5, 3, 13, 17, 29, 2, 55, 1, 2, 1, 1, 4, 9, 3, 21, 31, 47, 2, 89, 1
Offset: 1

Views

Author

Rémy Sigrist, Feb 17 2021

Keywords

Comments

This table contains all Fibonacci sequences of order m > 0 with positive terms:
- order 1 corresponds to constant sequences (n in A126646),
- order 2 corresponds to Fibonacci-like sequences (n in A043569),
- order 3 corresponds to tribonacci-like sequences (n in A043570),
- order 4 corresponds to tetranacci-like sequences (n in A043571).
For any n > 0, the row A341746(n) corresponds to the n-th row from which the first term has been removed.

Examples

			Array T(n, k) begins:
  n\k|  1  2  3  4  5   6   7   8   9   10   11   12   13    14
  ---+---------------------------------------------------------
    1|  1  1  1  1  1   1   1   1   1    1    1    1    1     1 --> A000012
    2|  1  1  2  3  5   8  13  21  34   55   89  144  233   377 --> A000045
    3|  2  2  2  2  2   2   2   2   2    2    2    2    2     2 --> A007395
    4|  2  1  3  4  7  11  18  29  47   76  123  199  322   521 --> A000032
    5|  1  1  1  3  5   9  17  31  57  105  193  355  653  1201 --> A000213
    6|  1  2  3  5  8  13  21  34  55   89  144  233  377   610 --> A000045
    7|  3  3  3  3  3   3   3   3   3    3    3    3    3     3 --> A010701
    8|  3  1  4  5  9  14  23  37  60   97  157  254  411   665 --> A104449
    9|  1  2  1  4  7  12  23  42  77  142  261  480  883  1624 --> A275778
   10|  1  1  1  1  4   7  13  25  49   94  181  349  673  1297 --> A000288
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

T(A341746(n), k) = T(n, k+1).
T(n, 1) = A136480(n).