This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341701 #9 Feb 24 2021 08:21:52 %S A341701 -1,-1,2,3,3,5,-1,7,-1,-1,9,11,-1,13,-1,-1,-1,17,-1,19,-1,-1,21,23,23, %T A341701 13,-1,23,-1,29,-1,31,-1,-1,33,-1,-1,37,-1,-1,-1,41,41,43,-1,-1,39,47, %U A341701 41,-1,-1,47,37,53,-1,43,47,-1,57,59,47,61,-1,-1,-1,-1,-1 %N A341701 a(n) = largest m > 0 such that the decimal concatenation n||n-1||n-2||...||m is prime, or -1 if no such prime exists. %C A341701 A variant of A341717. a(82) = 1. Are there other n such that a(n) = 1? %C A341701 Similar argument as in A341716 shows that if n > 3 and a(n) >= 0, then a(n) is odd, n-a(n) !== 2 (mod 3) and n+a(n) !== 0 (mod 3). %F A341701 a(p) = p if and only if p is prime. %e A341701 a(4) = 3 since 43 is prime, a(25) = 13 since 25242322212019181716151413 is prime. %o A341701 (Python) %o A341701 from sympy import isprime %o A341701 def A341701(n): %o A341701 k, m = n, n-1 %o A341701 while not isprime(k) and m > 0: %o A341701 k = int(str(k)+str(m)) %o A341701 m -= 1 %o A341701 return m+1 if isprime(k) else -1 %Y A341701 Cf. A052088, A052089, A341702, A341715, A341716, A341717. %K A341701 sign,base %O A341701 0,3 %A A341701 _Chai Wah Wu_, Feb 23 2021