This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341702 #20 Mar 02 2022 12:08:42 %S A341702 -1,-1,0,0,1,0,-1,0,-1,-1,1,0,-1,0,-1,-1,-1,0,-1,0,-1,-1,1,0,1,12,-1, %T A341702 4,-1,0,-1,0,-1,-1,1,-1,-1,0,-1,-1,-1,0,1,0,-1,-1,7,0,7,-1,-1,4,15,0, %U A341702 -1,12,9,-1,1,0,13,0,-1,-1,-1,-1,-1,0,57,-1,1,0,-1,0 %N A341702 a(n) is the smallest k < n such that the decimal concatenation n||n-1||n-2||...||n-k is prime, or -1 if no such prime exists. %C A341702 A variation of A341716. a(n) = n-1 for n = 82. Are there other n such that a(n) = n-1? %C A341702 Similar argument as in A341716 shows that if n > 3 and a(n) >= 0, then n-a(n) is odd, a(n) !== 2 (mod 3) and 2n-a(n) !== 0 (mod 3). %H A341702 Robert Israel, <a href="/A341702/b341702.txt">Table of n, a(n) for n = 0..2000</a> %F A341702 a(n) = n-A341701(n). %F A341702 a(p) = 0 if and only if p is prime. %e A341702 a(10) = 1 since 109 is prime. a(22) = 1 since 2221 is prime. %p A341702 tcat:= proc(x,y) x*10^(1+ilog10(y))+y end proc: %p A341702 f:= proc(n) local x,k; %p A341702 x:= n; %p A341702 for k from 0 to n-1 do %p A341702 if isprime(x) then return k fi; %p A341702 x:= tcat(x,n-k-1) %p A341702 od; %p A341702 -1 %p A341702 end proc: %p A341702 map(f, [$0..100]); # _Robert Israel_, Mar 02 2022 %o A341702 (Python) %o A341702 from sympy import isprime %o A341702 def A341702(n): %o A341702 k, m = n, n-1 %o A341702 while not isprime(k) and m > 0: %o A341702 k = int(str(k)+str(m)) %o A341702 m -= 1 %o A341702 return n-m-1 if isprime(k) else -1 %o A341702 (PARI) a(n) = my(k=0, s=Str(n)); while (!isprime(eval(s)), k++; n--; if (k>=n, return(-1)); s = concat(s, Str(n-k))); return(k); \\ _Michel Marcus_, Mar 02 2022 %Y A341702 Cf. A052088, A052089, A054211, A341701, A341715, A341716, A341717. %K A341702 sign,base %O A341702 0,26 %A A341702 _Chai Wah Wu_, Feb 23 2021