A341722 The part of n in base phi right of the decimal point (reversed), using a greedy algorithm representation (more precisely, using the Bergman-canonical representation).
0, 0, 10, 10, 10, 1001, 1000, 1000, 1000, 1010, 1010, 1010, 100101, 100100, 100100, 100100, 100001, 100000, 100000, 100000, 100010, 100010, 100010, 101001, 101000, 101000, 101000, 101010, 101010, 101010, 10010101, 10010100, 10010100, 10010100, 10010001, 10010000, 10010000
Offset: 0
Examples
The first few numbers written in base phi are: 0 = 0. 1 = 1. 2 = 10.01 3 = 100.01 4 = 101.01 5 = 1000.1001 6 = 1010.0001 7 = 10000.0001 8 = 10001.0001 9 = 10010.0101 10 = 10100.0101 11 = 10101.0101 12 = 100000.101001 13 = 100010.001001 14 = 100100.001001 15 = 100101.001001 16 = 101000.100001 17 = 101010.000001 18 = 1000000.000001 19 = 1000001.000001 20 = 1000010.010001 21 = 1000100.010001 22 = 1000101.010001 23 = 1001000.100101 24 = 1001010.000101 ...
Links
- Hugo Pfoertner, Table of n, a(n) for n = 0..1000
- F. Michel Dekking, How to add two natural numbers in base phi, arXiv:2002.01665 [math.NT], 5 Feb 2020.
- C. Frougny and J. Sakarovitch, Automatic conversion from Fibonacci representation to representation in base phi, and a generalization, Int. J. Algebra Comput. 9 (1999), 351-384. See also preprint.
- Ron Knott, Phigits and the Base Phi representation.
- Ron Knott, Phigits and the Base Phi representation [Local copy, pdf only]
- Jeffrey Shallit, Proving Properties of phi-Representations with the Walnut Theorem-Prover, arXiv:2305.02672 [math.NT], 2023.
Extensions
Definition clarified by N. J. A. Sloane, May 27 2023
Comments