This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341723 #33 Sep 11 2023 12:41:18 %S A341723 1,-1,1,5,-2,1,-31,15,-3,1,257,-124,30,-4,1,-2671,1285,-310,50,-5,1, %T A341723 33305,-16026,3855,-620,75,-6,1,-484471,233135,-56091,8995,-1085,105, %U A341723 -7,1,8054177,-3875768,932540,-149576,17990,-1736,140,-8,1 %N A341723 Triangle read by rows: coefficients of expansion of certain weighted sums P_1(n,k) of Fibonacci numbers as a sum of powers. %C A341723 Conjectures from _Mélika Tebni_, Sep 09 2023: (Start) %C A341723 For 0 < k < p and p prime, T(p,k) == 0 (mod p). %C A341723 For 0 < k < n (k odd) and n = 2^m (m natural number), T(n,k) == 0 (mod n). (End) %D A341723 Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin’s summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56. See Table 2. %F A341723 From _Mélika Tebni_, Sep 09 2023: (Start) %F A341723 E.g.f. of column k: exp(x)*x^k / ((1+2*sinh(x))*k!). %F A341723 T(n,k) = (-1)^(n-k)*binomial(n,k)*A000556(n-k). %F A341723 Recurrence: T(n,0) = (-1)^n*A000556(n) and T(n,k) = n*T(n-1,k-1) / k, n >= k >= 1. (End) %e A341723 Triangle begins: %e A341723 1; %e A341723 -1, 1; %e A341723 5, -2, 1; %e A341723 -31, 15, -3, 1; %e A341723 257, -124, 30, -4, 1; %e A341723 -2671, 1285, -310, 50, -5, 1; %e A341723 33305, -16026, 3855, -620, 75, -6, 1; %e A341723 -484471, 233135, -56091, 8995, -1085, 105, -7, 1; %e A341723 8054177, -3875768, 932540, -149576, 17990, -1736, 140, -8, 1; %e A341723 ... %p A341723 egf:= k-> exp(x)*x^k / ((1+2*sinh(x))*k!): %p A341723 A341723:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n): %p A341723 seq(print(seq(A341723(n, k), k=0..n)), n=0..8); # _Mélika Tebni_, Sep 09 2023 %p A341723 second Maple program: %p A341723 A341723:= (n, k)-> (-1)^(n-k)*binomial(n, k)*add(j!*combinat[fibonacci](j+1)*Stirling2(n-k,j), j=0.. n-k): %p A341723 seq(print(seq(A341723(n, k), k=0..n)), n=0..8); # _Mélika Tebni_, Sep 09 2023 %Y A341723 Column 0 is a signed version of A000556, column 1 is A341726. %Y A341723 Cf. A341724, A341725. %K A341723 sign,tabl %O A341723 0,4 %A A341723 _N. J. A. Sloane_, Mar 04 2021