This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341738 #13 Feb 19 2021 18:30:05 %S A341738 1,2,1,7,2,1,16,25,2,1,41,72,112,2,1,98,361,400,529,2,1,239,1250,4961, %T A341738 2312,2527,2,1,576,5041,25088,77841,13456,12100,2,1,1393,18432,200999, %U A341738 559682,1270016,78408,57967,2,1 %N A341738 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = sqrt( Product_{a=1..n} Product_{b=1..k-1} (4*sin((2*a-1)*Pi/(2*n))^2 + 4*sin(2*b*Pi/k)^2) ). %F A341738 If k is odd, T(n,k) = A341533(n,k)/2. %e A341738 Square array begins: %e A341738 1, 2, 7, 16, 41, 98, ... %e A341738 1, 2, 25, 72, 361, 1250, ... %e A341738 1, 2, 112, 400, 4961, 25088, ... %e A341738 1, 2, 529, 2312, 77841, 559682, ... %e A341738 1, 2, 2527, 13456, 1270016, 12771458, ... %e A341738 1, 2, 12100, 78408, 20967241, 292820000, ... %o A341738 (PARI) default(realprecision, 120); %o A341738 T(n, k) = round(sqrt(prod(a=1, n, prod(b=1, k-1, 4*sin((2*a-1)*Pi/(2*n))^2+4*sin(2*b*Pi/k)^2)))); %Y A341738 Main diagonal gives A341782. %Y A341738 Cf. A341533, A341739, A341741. %K A341738 nonn,tabl %O A341738 1,2 %A A341738 _Seiichi Manyama_, Feb 18 2021