This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341746 #14 Feb 19 2021 12:05:56 %S A341746 1,6,3,14,29,28,7,30,123,122,61,60,121,120,15,62,503,502,251,250,501, %T A341746 500,125,124,499,498,249,248,497,496,31,126,2031,2030,1015,1014,2029, %U A341746 2028,507,506,2027,2026,1013,1012,2025,2024,253,252,2023,2022,1011,1010 %N A341746 If the runs in the binary expansion of n are (r_1, ..., r_k), then the runs in the binary expansion of a(n) are (r_1 + ... + r_k, r_1, ..., r_{k-1}). %C A341746 This sequence is related to A341694 (see Formula section). %C A341746 All terms are distinct. %C A341746 If a(n) > n, then a(n) does not appear in A341699. %H A341746 Rémy Sigrist, <a href="/A341746/b341746.txt">Table of n, a(n) for n = 1..8192</a> %H A341746 Rémy Sigrist, <a href="/A341746/a341746.png">Binary plot of the first 255 terms</a> %H A341746 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A341746 A341694(a(n), k) = A341694(n, k+1). %F A341746 a(n) = n iff n belongs to A126646. %F A341746 A090996(a(n)) = A070939(n). %F A341746 A090996(a(n)) > A070939(a(n)) / 2. %F A341746 A005811(a(n)) = A005811(n). %e A341746 The first terms, in decimal and in binary, are: %e A341746 n a(n) bin(n) bin(a(n)) %e A341746 -- ---- ------ --------- %e A341746 1 1 1 1 %e A341746 2 6 10 110 %e A341746 3 3 11 11 %e A341746 4 14 100 1110 %e A341746 5 29 101 11101 %e A341746 6 28 110 11100 %e A341746 7 7 111 111 %e A341746 8 30 1000 11110 %e A341746 9 123 1001 1111011 %e A341746 10 122 1010 1111010 %e A341746 11 61 1011 111101 %e A341746 12 60 1100 111100 %e A341746 13 121 1101 1111001 %e A341746 14 120 1110 1111000 %e A341746 15 15 1111 1111 %o A341746 (PARI) toruns(n) = { my (r=[]); while (n, my (v=valuation(n+n%2, 2)); n\=2^v; r=concat(v, r)); r } %o A341746 fromruns(r) = { my (v=0); for (k=1, #r, v=(v+k%2)*2^r[k]-k%2); v } %o A341746 a(n) = { my (r=toruns(n)); fromruns(concat(vecsum(r), r[1..#r-1])) } %Y A341746 Cf. A005811, A070939, A090996, A126646, A341694, A341699. %K A341746 nonn,base %O A341746 1,2 %A A341746 _Rémy Sigrist_, Feb 18 2021