cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A341747 Decimal expansion of zeta(3) * zeta(4) * Product_{p prime} (1 + 1/p^2 - 2/p^3 - 2/p^5 + 2/p^6).

Original entry on oeis.org

1, 3, 8, 6, 9, 2, 4, 1, 7, 0, 4, 1, 3, 5, 6, 5, 8, 6, 8, 9, 8, 8, 1, 4, 9, 1, 9, 7, 6, 6, 5, 1, 0, 6, 8, 3, 6, 1, 6, 5, 2, 6, 2, 0, 7, 8, 2, 6, 3, 9, 2, 9, 9, 1, 7, 4, 1, 1, 3, 7, 0, 1, 5, 8, 1, 3, 7, 2, 6, 0, 2, 1, 5, 6, 6, 1, 7, 6, 7, 9, 2, 2, 6, 3, 4, 1, 2
Offset: 1

Views

Author

Amiram Eldar, Feb 18 2021

Keywords

Comments

The constant c in the asymptotic formulas Sum_{n1, n2 <= x} sigma(lcm(n1, n2)) = c * x^4/4 + O(x^(7/2 + eps)) and Sum_{n1, n2 <= x} sigma(lcm(n1, n2))/(n1*n2) = c * x^2 + O(x^(3/2 + eps)).

Examples

			1.38692417041356586898814919766510683616526207826392...
		

Crossrefs

Cf. A000203 (sigma), A240976, A341748.

Programs

  • Mathematica
    $MaxExtraPrecision = 1500; m = 1500; c = LinearRecurrence[{0, -1, 2, 0, 2, -2}, {0, 2, -6, -2, 0, 2}, m]; Zeta[3] * Zeta[4] * Exp[NSum[Indexed[c, n]*PrimeZetaP[n]/n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]]
  • PARI
    zeta(3) * zeta(4) * prodeulerrat(1 + 1/p^2 - 2/p^3 - 2/p^5 + 2/p^6)
Showing 1-1 of 1 results.