cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341763 Numbers whose trajectory under iteration of sum of cubes of digits (map) produce a narcissistic number greater than nine.

This page as a plain text file.
%I A341763 #15 Mar 20 2021 14:40:10
%S A341763 2,3,5,6,7,8,9,11,12,14,15,17,18,19,20,21,23,24,26,27,29,30,32,33,34,
%T A341763 35,36,37,38,39,41,42,43,44,45,47,48,50,51,53,54,56,57,58,59,60,62,63,
%U A341763 65,66,67,68,69,70,71,72,73,74,75,76,77,78,80,81,83,84,85
%N A341763 Numbers whose trajectory under iteration of sum of cubes of digits (map) produce a narcissistic number greater than nine.
%C A341763 Conjecture: all multiples of 3 are terms of this sequence.
%H A341763 J. J. Camacho, <a href="https://www.masscience.com/2020/06/16/un-metodo-insospechado-para-encontrar-numeros-narcisistas/">Un Método Insospechado Para Encontrar Números Narcisistas</a> (in Spanish)
%e A341763 For a(1) = 2:
%e A341763 2^3 = 8.
%e A341763 8^3 = 512.
%e A341763 5^3 + 1^3 + 2^3 = 134.
%e A341763 1^3 + 3^3 + 4^3 = 92.
%e A341763 9^3 + 2^3 = 737.
%e A341763 7^3 + 3^3 + 7^3 = 713.
%e A341763 7^3 + 1^3 + 3^3 = 371.
%e A341763 371 is a narcissistic number.
%t A341763 (* A example with recurrence formula to test if the number belongs to this sequence *)
%t A341763 f[1] = 2;
%t A341763 f[n_] := Total[IntegerDigits[f[n - 1]]^3]
%t A341763 Table[Total[IntegerDigits[f[n]]^3], {n, 1, 10}]
%Y A341763 Cf. A055012 (sum of cubes of digits), A005188 (narcissistic numbers).
%K A341763 nonn,base
%O A341763 1,1
%A A341763 _José de Jesús Camacho Medina_, Feb 19 2021