This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341763 #15 Mar 20 2021 14:40:10 %S A341763 2,3,5,6,7,8,9,11,12,14,15,17,18,19,20,21,23,24,26,27,29,30,32,33,34, %T A341763 35,36,37,38,39,41,42,43,44,45,47,48,50,51,53,54,56,57,58,59,60,62,63, %U A341763 65,66,67,68,69,70,71,72,73,74,75,76,77,78,80,81,83,84,85 %N A341763 Numbers whose trajectory under iteration of sum of cubes of digits (map) produce a narcissistic number greater than nine. %C A341763 Conjecture: all multiples of 3 are terms of this sequence. %H A341763 J. J. Camacho, <a href="https://www.masscience.com/2020/06/16/un-metodo-insospechado-para-encontrar-numeros-narcisistas/">Un Método Insospechado Para Encontrar Números Narcisistas</a> (in Spanish) %e A341763 For a(1) = 2: %e A341763 2^3 = 8. %e A341763 8^3 = 512. %e A341763 5^3 + 1^3 + 2^3 = 134. %e A341763 1^3 + 3^3 + 4^3 = 92. %e A341763 9^3 + 2^3 = 737. %e A341763 7^3 + 3^3 + 7^3 = 713. %e A341763 7^3 + 1^3 + 3^3 = 371. %e A341763 371 is a narcissistic number. %t A341763 (* A example with recurrence formula to test if the number belongs to this sequence *) %t A341763 f[1] = 2; %t A341763 f[n_] := Total[IntegerDigits[f[n - 1]]^3] %t A341763 Table[Total[IntegerDigits[f[n]]^3], {n, 1, 10}] %Y A341763 Cf. A055012 (sum of cubes of digits), A005188 (narcissistic numbers). %K A341763 nonn,base %O A341763 1,1 %A A341763 _José de Jesús Camacho Medina_, Feb 19 2021