cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A341779 Numbers k such that k and k+1 are both anti-tau numbers (A046642).

Original entry on oeis.org

3, 4, 15, 16, 64, 100, 195, 196, 255, 256, 483, 484, 676, 783, 784, 1023, 1024, 1155, 1156, 1295, 1296, 1443, 1444, 1599, 1600, 1936, 2116, 2703, 2704, 3363, 3364, 3844, 4096, 4623, 4624, 4899, 4900, 5183, 5184, 5476, 5776, 6399, 6400, 6723, 6724, 7395, 7396
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2021

Keywords

Comments

Since the even anti-tau numbers (A268066) are square numbers, all the terms are either of the form 4*k^2 - 1 or 4*k^2.

Examples

			3 is a term since 3 and 4 are both anti-tau numbers: gcd(3, tau(3)) = gcd(3, 2) = 1 and gcd(4, tau(4)) = gcd(4, 3) = 1.
		

Crossrefs

Subsequence of A046642 and A081350.

Programs

  • Mathematica
    antiTauQ[n_] := CoprimeQ[n, DivisorSigma[0, n]]; s = {}; Do[k = 4*n^2; If[antiTauQ[k], If[antiTauQ[k - 1], AppendTo[s, k - 1]]; If[antiTauQ[k + 1], AppendTo[s, k]]], {n, 1, 50}]; s
Showing 1-1 of 1 results.