A341783 Absolute values of norms of prime elements in Z[(1+sqrt(5))/2], the ring of integers of Q(sqrt(5)).
4, 5, 9, 11, 19, 29, 31, 41, 49, 59, 61, 71, 79, 89, 101, 109, 131, 139, 149, 151, 169, 179, 181, 191, 199, 211, 229, 239, 241, 251, 269, 271, 281, 289, 311, 331, 349, 359, 379, 389, 401, 409, 419, 421, 431, 439, 449, 461, 479, 491, 499, 509, 521, 529
Offset: 1
Examples
norm((7 + sqrt(5))/2) = norm((7 - sqrt(5))/2) = 11; norm((9 + sqrt(5))/2) = norm((9 - sqrt(5))/2) = 19; norm((11 + sqrt(5))/2) = norm((11 - sqrt(5))/2) = 29; norm(6 + sqrt(5)) = norm(6 - sqrt(5)) = 31.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Crossrefs
The number of nonassociative elements with absolute value of norm n (also the number of distinct ideals with norm n) is given by A035187.
Norms of prime ideals in O_K, where K is the quadratic field with discriminant D and O_K be the ring of integers of K: A055673 (D=8), this sequence (D=5), A055664 (D=-3), A055025 (D=-4), A090348 (D=-7), A341784 (D=-8), A341785 (D=-11), A341786 (D=-15*), A341787 (D=-19), A091727 (D=-20*), A341788 (D=-43), A341789 (D=-67), A341790 (D=-163). Here a "*" indicates the cases where O_K is not a unique factorization domain.
Programs
-
PARI
isA341783(n) = my(disc=5); (isprime(n) && kronecker(disc,n)>=0) || (issquare(n, &n) && isprime(n) && kronecker(disc,n)==-1)
Comments