A341786 Norms of prime ideals in Z[(1+sqrt(-15))/2], the ring of integers of Q(sqrt(-15)).
2, 3, 5, 17, 19, 23, 31, 47, 49, 53, 61, 79, 83, 107, 109, 113, 121, 137, 139, 151, 167, 169, 173, 181, 197, 199, 211, 227, 229, 233, 241, 257, 263, 271, 293, 317, 331, 347, 349, 353, 379, 383, 409, 421, 439, 443, 467, 499, 503, 541, 557, 563, 571, 587
Offset: 1
Examples
Let |I| be the norm of an ideal I, then: |(2, (1+sqrt(-15))/2)| = |(2, (1-sqrt(-15))/2)| = 2; |(3, sqrt(-15))| = 3; |(5, sqrt(-15))| = 5; |(17, 7+4*sqrt(-15))| = |(17, 7-4*sqrt(-15))| = 17; |(2 + sqrt(-15))| = |(2 - sqrt(-15))| = 19; |(23, 17+4*sqrt(-15))| = |(23, 17-4*sqrt(-15))| = 23; |(4 + sqrt(-15))| = |(4 - sqrt(-15))| = 31.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Crossrefs
The number of distinct ideals with norm n is given by A035175.
Norms of prime ideals in O_K, where K is the quadratic field with discriminant D and O_K be the ring of integers of K: A055673 (D=8), A341783 (D=5), A055664 (D=-3), A055025 (D=-4), A090348 (D=-7), A341784 (D=-8), A341785 (D=-11), this sequence (D=-15*), A341787 (D=-19), A091727 (D=-20*), A341788 (D=-43), A341789 (D=-67), A341790 (D=-163). Here a "*" indicates the cases where O_K is not a unique factorization domain.
Programs
-
PARI
isA341786(n) = my(disc=-15); (isprime(n) && kronecker(disc,n)>=0) || (issquare(n, &n) && isprime(n) && kronecker(disc,n)==-1)
Comments