A341790 Norms of prime elements in Z[(1+sqrt(-163))/2], the ring of integers of Q(sqrt(-163)).
4, 9, 25, 41, 43, 47, 49, 53, 61, 71, 83, 97, 113, 121, 131, 151, 163, 167, 169, 173, 179, 197, 199, 223, 227, 251, 263, 281, 289, 307, 313, 347, 359, 361, 367, 373, 379, 383, 397, 409, 419, 421, 439, 457, 461, 487, 499, 503, 523, 529, 547, 563, 577, 593
Offset: 1
Examples
norm((1 + sqrt(-163))/2) = norm((1 - sqrt(-163))/2) = 41; norm((3 + sqrt(-163))/2) = norm((3 - sqrt(-163))/2) = 43; norm((5 + sqrt(-163))/2) = norm((5 - sqrt(-163))/2) = 47; norm((7 + sqrt(-163))/2) = norm((7 - sqrt(-163))/2) = 53; ... norm((79 + sqrt(-163))/2) = norm((79 - sqrt(-163))/2) = 1601.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Crossrefs
The number of nonassociative elements with norm n (also the number of distinct ideals with norm n) is given by A318983.
The total number of elements with norm n is given by A318985.
Norms of prime ideals in O_K, where K is the quadratic field with discriminant D and O_K be the ring of integers of K: A055673 (D=8), A341783 (D=5), A055664 (D=-3), A055025 (D=-4), A090348 (D=-7), A341784 (D=-8), A341785 (D=-11), A341786 (D=-15*), A341787 (D=-19), A091727 (D=-20*), A341788 (D=-43), A341789 (D=-67), this sequence (D=-163). Here a "*" indicates the cases where O_K is not a unique factorization domain.
Programs
-
PARI
isA341783(n) = my(disc=-163); (isprime(n) && kronecker(disc,n)>=0) || (issquare(n, &n) && isprime(n) && kronecker(disc,n)==-1)
Comments