cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341831 Dirichlet g.f.: 1 / zeta(s)^5.

This page as a plain text file.
%I A341831 #13 Sep 01 2021 03:09:31
%S A341831 1,-5,-5,10,-5,25,-5,-10,10,25,-5,-50,-5,25,25,5,-5,-50,-5,-50,25,25,
%T A341831 -5,50,10,25,-10,-50,-5,-125,-5,-1,25,25,25,100,-5,25,25,50,-5,-125,
%U A341831 -5,-50,-50,25,-5,-25,10,-50,25,-50,-5,50,25,50,25,25,-5,250,-5,25,-50,0,25
%N A341831 Dirichlet g.f.: 1 / zeta(s)^5.
%C A341831 Dirichlet inverse of A061200.
%H A341831 Seiichi Manyama, <a href="/A341831/b341831.txt">Table of n, a(n) for n = 1..10000</a>
%F A341831 Multiplicative with a(p^e) = (-1)^e * binomial(5, e).
%F A341831 a(1) = 1; a(n) = -Sum_{d|n, d < n} tau_5(n/d) * a(d).
%t A341831 a[1] = 1; a[n_] := Times @@ ((-1)^#[[2]] Binomial[5, #[[2]]] &/@ FactorInteger[n]); Table[a[n], {n, 65}]
%o A341831 (PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - X)^5)[n], ", ")) \\ _Vaclav Kotesovec_, Feb 22 2021
%Y A341831 Row 5 of A346148.
%Y A341831 Cf. A007427, A007428, A008683, A061200, A247343, A341832, A341833, A341834, A341835, A341836.
%K A341831 sign,mult
%O A341831 1,2
%A A341831 _Ilya Gutkovskiy_, Feb 21 2021