cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341832 Dirichlet g.f.: 1 / zeta(s)^6.

This page as a plain text file.
%I A341832 #12 Sep 01 2021 03:09:21
%S A341832 1,-6,-6,15,-6,36,-6,-20,15,36,-6,-90,-6,36,36,15,-6,-90,-6,-90,36,36,
%T A341832 -6,120,15,36,-20,-90,-6,-216,-6,-6,36,36,36,225,-6,36,36,120,-6,-216,
%U A341832 -6,-90,-90,36,-6,-90,15,-90,36,-90,-6,120,36,120,36,36,-6,540,-6,36,-90,1,36
%N A341832 Dirichlet g.f.: 1 / zeta(s)^6.
%C A341832 Dirichlet inverse of A034695.
%H A341832 Seiichi Manyama, <a href="/A341832/b341832.txt">Table of n, a(n) for n = 1..10000</a>
%F A341832 Multiplicative with a(p^e) = (-1)^e * binomial(6, e).
%F A341832 a(1) = 1; a(n) = -Sum_{d|n, d < n} tau_6(n/d) * a(d).
%t A341832 a[1] = 1; a[n_] := Times @@ ((-1)^#[[2]] Binomial[6, #[[2]]] &/@ FactorInteger[n]); Table[a[n], {n, 65}]
%o A341832 (PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - X)^6)[n], ", ")) \\ _Vaclav Kotesovec_, Feb 22 2021
%Y A341832 Row 6 of A346148.
%Y A341832 Cf. A007427, A007428, A008683, A034695, A247343, A341831, A341833, A341834, A341835, A341836.
%K A341832 sign,mult
%O A341832 1,2
%A A341832 _Ilya Gutkovskiy_, Feb 21 2021