cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341833 Dirichlet g.f.: 1 / zeta(s)^7.

This page as a plain text file.
%I A341833 #12 Sep 01 2021 03:09:12
%S A341833 1,-7,-7,21,-7,49,-7,-35,21,49,-7,-147,-7,49,49,35,-7,-147,-7,-147,49,
%T A341833 49,-7,245,21,49,-35,-147,-7,-343,-7,-21,49,49,49,441,-7,49,49,245,-7,
%U A341833 -343,-7,-147,-147,49,-7,-245,21,-147,49,-147,-7,245,49,245,49,49,-7,1029,-7,49
%N A341833 Dirichlet g.f.: 1 / zeta(s)^7.
%C A341833 Dirichlet inverse of A111217.
%H A341833 Seiichi Manyama, <a href="/A341833/b341833.txt">Table of n, a(n) for n = 1..10000</a>
%F A341833 Multiplicative with a(p^e) = (-1)^e * binomial(7, e).
%F A341833 a(1) = 1; a(n) = -Sum_{d|n, d < n} tau_7(n/d) * a(d).
%t A341833 a[1] = 1; a[n_] := Times @@ ((-1)^#[[2]] Binomial[7, #[[2]]] &/@ FactorInteger[n]); Table[a[n], {n, 62}]
%o A341833 (PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - X)^7)[n], ", ")) \\ _Vaclav Kotesovec_, Feb 22 2021
%Y A341833 Row 7 of A346148.
%Y A341833 Cf. A007427, A007428, A008683, A111217, A247343, A341831, A341832, A341834, A341835, A341836.
%K A341833 sign,mult
%O A341833 1,2
%A A341833 _Ilya Gutkovskiy_, Feb 21 2021