cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341835 Dirichlet g.f.: 1 / zeta(s)^9.

This page as a plain text file.
%I A341835 #12 Sep 01 2021 03:09:16
%S A341835 1,-9,-9,36,-9,81,-9,-84,36,81,-9,-324,-9,81,81,126,-9,-324,-9,-324,
%T A341835 81,81,-9,756,36,81,-84,-324,-9,-729,-9,-126,81,81,81,1296,-9,81,81,
%U A341835 756,-9,-729,-9,-324,-324,81,-9,-1134,36,-324,81,-324,-9,756,81,756,81,81
%N A341835 Dirichlet g.f.: 1 / zeta(s)^9.
%C A341835 Dirichlet inverse of A111219.
%H A341835 Seiichi Manyama, <a href="/A341835/b341835.txt">Table of n, a(n) for n = 1..10000</a>
%F A341835 Multiplicative with a(p^e) = (-1)^e * binomial(9, e).
%F A341835 a(1) = 1; a(n) = -Sum_{d|n, d < n} tau_9(n/d) * a(d).
%t A341835 a[1] = 1; a[n_] := Times @@ ((-1)^#[[2]] Binomial[9, #[[2]]] &/@ FactorInteger[n]); Table[a[n], {n, 58}]
%o A341835 (PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - X)^9)[n], ", ")) \\ _Vaclav Kotesovec_, Feb 22 2021
%Y A341835 Row 9 of A346148.
%Y A341835 Cf. A007427, A007428, A008683, A111219, A247343, A341831, A341832, A341833, A341834, A341836.
%K A341835 sign,mult
%O A341835 1,2
%A A341835 _Ilya Gutkovskiy_, Feb 21 2021