A341839 Square array T(n, k), n, k >= 0, read by antidiagonals; for any number m with runs in binary expansion (r_1, ..., r_j), let R(m) = {r_1 + ... + r_j, r_2 + ... + r_j, ..., r_j}; T(n, k) is the unique number t such that R(t) is the union of R(n) and of R(k).
0, 1, 1, 2, 1, 2, 3, 2, 2, 3, 4, 2, 2, 2, 4, 5, 5, 2, 2, 5, 5, 6, 5, 5, 3, 5, 5, 6, 7, 6, 5, 4, 4, 5, 6, 7, 8, 6, 5, 5, 4, 5, 5, 6, 8, 9, 9, 5, 5, 5, 5, 5, 5, 9, 9, 10, 9, 10, 4, 5, 5, 5, 4, 10, 9, 10, 11, 10, 10, 11, 4, 5, 5, 4, 11, 10, 10, 11, 12, 10, 10, 10, 11, 5, 6, 5, 11, 10, 10, 10, 12
Offset: 0
Examples
Array T(n, k) begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ---+----------------------------------------------------------------- 0| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1| 1 1 2 2 5 5 6 6 9 9 10 10 13 13 14 14 2| 2 2 2 2 5 5 5 5 10 10 10 10 13 13 13 13 3| 3 2 2 3 4 5 5 4 11 10 10 11 12 13 13 12 4| 4 5 5 4 4 5 5 4 11 10 10 11 11 10 10 11 5| 5 5 5 5 5 5 5 5 10 10 10 10 10 10 10 10 6| 6 6 5 5 5 5 6 6 9 9 10 10 10 10 9 9 7| 7 6 5 4 4 5 6 7 8 9 10 11 11 10 9 8 8| 8 9 10 11 11 10 9 8 8 9 10 11 11 10 9 8 9| 9 9 10 10 10 10 9 9 9 9 10 10 10 10 9 9 10| 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11| 11 10 10 11 11 10 10 11 11 10 10 11 11 10 10 11 12| 12 13 13 12 11 10 10 11 11 10 10 11 12 13 13 12 13| 13 13 13 13 10 10 10 10 10 10 10 10 13 13 13 13 14| 14 14 13 13 10 10 9 9 9 9 10 10 13 13 14 14 15| 15 14 13 12 11 10 9 8 8 9 10 11 12 13 14 15
Links
Programs
-
PARI
T(n,k) = { my (r=[], v=0); while (n||k, my (w=min(valuation(n+n%2,2), valuation(k+k%2,2))); r=concat(w,r); n\=2^w; k\=2^w); for (k=1, #r, v=(v+k%2)*2^r[k]-k%2); v }
Comments