This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341841 #12 Feb 24 2021 08:20:45 %S A341841 0,1,0,2,0,0,3,3,0,0,4,3,0,1,0,5,4,0,1,1,0,6,4,7,0,1,0,0,7,7,7,7,0,0, %T A341841 0,0,8,7,7,6,0,0,3,1,0,9,8,7,6,1,0,3,2,1,0,10,8,8,7,1,0,3,3,2,0,0,11, %U A341841 11,8,8,0,0,3,3,3,3,0,0,12,11,8,9,15,0,0,2,3,3,0,1,0 %N A341841 Square array T(n, k), n, k >= 0, read by antidiagonals upwards; for any number m with runs in binary expansion (r_1, ..., r_j), let R(m) = {r_1 + ... + r_j, r_2 + ... + r_j, ..., r_j}; T(n, k) is the unique number t such that R(t) equals R(n) minus R(k). %C A341841 For any m > 0, R(m) contains the partial sums of the m-th row of A227736; by convention, R(0) = {}. %C A341841 This sequence uses set subtraction, and is related to: %C A341841 - A003987 which uses set difference, %C A341841 - A341839 which uses set union, %C A341841 - A341840 which uses set intersection. %H A341841 Rémy Sigrist, <a href="/A341841/b341841.txt">Table of n, a(n) for n = 0..10010</a> %H A341841 Rémy Sigrist, <a href="/A341841/a341841.png">Colored representation of the table for n, k < 2^10</a> %H A341841 Rémy Sigrist, <a href="/A341841/a341841.gp.txt">PARI program for A341841</a> %H A341841 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A341841 T(n, n) = 0. %F A341841 T(n, 0) = n. %F A341841 T(T(n, k), k) = T(n, k). %F A341841 A070939(T(n, k)) <= A070939(n). %F A341841 A003188(T(n, k)) = A003188(n) - (A003188(n) AND A003188(k)) (where AND denotes the bitwise AND operator). %e A341841 Array T(n, k) begins: %e A341841 n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 %e A341841 ---+-------------------------------------------------------------- %e A341841 0| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 %e A341841 1| 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 %e A341841 2| 2 3 0 1 1 0 3 2 2 3 0 1 1 0 3 2 %e A341841 3| 3 3 0 0 0 0 3 3 3 3 0 0 0 0 3 3 %e A341841 4| 4 4 7 7 0 0 3 3 3 3 0 0 7 7 4 4 %e A341841 5| 5 4 7 6 1 0 3 2 2 3 0 1 6 7 4 5 %e A341841 6| 6 7 7 6 1 0 0 1 1 0 0 1 6 7 7 6 %e A341841 7| 7 7 7 7 0 0 0 0 0 0 0 0 7 7 7 7 %e A341841 8| 8 8 8 8 15 15 15 15 0 0 0 0 7 7 7 7 %e A341841 9| 9 8 8 9 14 15 15 14 1 0 0 1 6 7 7 6 %e A341841 10| 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5 %e A341841 11| 11 11 8 8 15 15 12 12 3 3 0 0 7 7 4 4 %e A341841 12| 12 12 15 15 15 15 12 12 3 3 0 0 0 0 3 3 %e A341841 13| 13 12 15 14 14 15 12 13 2 3 0 1 1 0 3 2 %e A341841 14| 14 15 15 14 14 15 15 14 1 0 0 1 1 0 0 1 %e A341841 15| 15 15 15 15 15 15 15 15 0 0 0 0 0 0 0 0 %o A341841 (PARI) See Links section. %Y A341841 Cf. A003188, A003987, A070939, A227736, A341839, A341840. %K A341841 nonn,tabl,base %O A341841 0,4 %A A341841 _Rémy Sigrist_, Feb 21 2021