A341840 Square array T(n, k), n, k >= 0, read by antidiagonals; for any number m with runs in binary expansion (r_1, ..., r_j), let R(m) = {r_1 + ... + r_j, r_2 + ... + r_j, ..., r_j}; T(n, k) is the unique number t such that R(t) is the intersection of R(n) and of R(k).
0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 3, 3, 0, 0, 0, 1, 3, 3, 3, 1, 0, 0, 1, 2, 3, 3, 2, 1, 0, 0, 0, 1, 3, 4, 3, 1, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 1, 0, 0, 7, 5, 7, 0, 0, 1, 0, 0, 1, 1, 0, 7, 6, 6, 7, 0, 1, 1, 0, 0, 0, 2, 0, 7, 7, 6, 7, 7, 0, 2, 0, 0
Offset: 0
Examples
Array T(n, k) begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ---+-------------------------------------------------------- 0| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1| 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 2| 0 1 2 3 3 2 1 0 0 1 2 3 3 2 1 0 3| 0 0 3 3 3 3 0 0 0 0 3 3 3 3 0 0 4| 0 0 3 3 4 4 7 7 7 7 4 4 3 3 0 0 5| 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1 0 6| 0 1 1 0 7 6 6 7 7 6 6 7 0 1 1 0 7| 0 0 0 0 7 7 7 7 7 7 7 7 0 0 0 0 8| 0 0 0 0 7 7 7 7 8 8 8 8 15 15 15 15 9| 0 1 1 0 7 6 6 7 8 9 9 8 15 14 14 15 10| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 11| 0 0 3 3 4 4 7 7 8 8 11 11 12 12 15 15 12| 0 0 3 3 3 3 0 0 15 15 12 12 12 12 15 15 13| 0 1 2 3 3 2 1 0 15 14 13 12 12 13 14 15 14| 0 1 1 0 0 1 1 0 15 14 14 15 15 14 14 15 15| 0 0 0 0 0 0 0 0 15 15 15 15 15 15 15 15
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10010
- Rémy Sigrist, Colored representation of the table for n, k < 2^10
- Rémy Sigrist, Colored representation of the table for n, k < 2^10 (black pixels correspond to 0's)
- Rémy Sigrist, PARI program for A341840
- Index entries for sequences related to binary expansion of n
Programs
-
PARI
See Links section.
Comments