This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341856 #10 Mar 14 2021 18:48:15 %S A341856 1,0,1,0,1,3,0,1,6,13,0,1,10,36,68,0,1,15,80,228,399,0,1,21,155,610, %T A341856 1518,2530,0,1,28,273,1410,4625,10530,16965,0,1,36,448,2933,12165, %U A341856 35322,75516,118668,0,1,45,696,5628,28707,102548,272800,556512,857956 %N A341856 Array read by antidiagonals: T(n,k) is the number of rooted strong triangulations of a disk with n interior nodes and 3+k nodes on the boundary. %C A341856 A strong triangulation is one in which no interior edge joins two nodes on the boundary. Except for the single triangle which is enumerated by T(0,0) these are the 3-connected triangulations. %H A341856 Andrew Howroyd, <a href="/A341856/b341856.txt">Table of n, a(n) for n = 0..1325</a> %H A341856 William T. Tutte, <a href="http://dx.doi.org/10.4153/CJM-1962-002-9">A census of planar triangulations</a>, Canad. J. Math. 14 (1962), 21-38. %F A341856 T(n,0) = A000260(n) = 2*(4*n+1)!/((3*n+2)!*(n+1)!). %F A341856 T(n,m) = (3*(m+2)!*(m-1)!/(3*n+3*m+3)!) * Sum_{j=0..min(m,n-1)} (4*n+3*m-j+1)!*(m+j+2)*(m-3*j)/(j!*(j+1)!*(m-j)!*(m-j+2)!*(n-j-1)!) for m > 0. %e A341856 Array begins: %e A341856 ======================================================= %e A341856 n\k | 0 1 2 3 4 5 6 %e A341856 ----+-------------------------------------------------- %e A341856 0 | 1 0 0 0 0 0 0 ... %e A341856 1 | 1 1 1 1 1 1 1 ... %e A341856 2 | 3 6 10 15 21 28 36 ... %e A341856 3 | 13 36 80 155 273 448 696 ... %e A341856 4 | 68 228 610 1410 2933 5628 10128 ... %e A341856 5 | 399 1518 4625 12165 28707 62230 125928 ... %e A341856 6 | 2530 10530 35322 102548 267162 638624 1422204 ... %e A341856 ... %o A341856 (PARI) T(n,m)=if(m==0, 2*(4*n+1)!/((3*n+2)!*(n+1)!), (3*(m+2)!*(m-1)!/(3*n+3*m+3)!)*sum(j=0, min(m,n-1), (4*n+3*m-j+1)!*(m+j+2)*(m-3*j)/(j!*(j+1)!*(m-j)!*(m-j+2)!*(n-j-1)!))) %Y A341856 Columns k=0..3 are A000260, A242136, A341917, A341918. %Y A341856 Antidiagonal sums give A341919. %Y A341856 Cf. A146305 (not necessarily strong triangulations), A210664, A341923, A342053. %K A341856 nonn,tabl %O A341856 0,6 %A A341856 _Andrew Howroyd_, Feb 23 2021