A341864 Least increasing sequence of primes a(n) == A020652(n) (mod A038567(n)).
3, 7, 11, 13, 19, 31, 37, 43, 59, 61, 71, 113, 149, 157, 179, 229, 251, 257, 283, 293, 311, 379, 389, 409, 419, 421, 431, 461, 463, 467, 479, 617, 673, 751, 829, 863, 919, 953, 1009, 1021, 1033, 1069, 1097, 1123, 1151, 1171, 1237, 1277, 1291, 1409, 1423, 1489, 1607, 1621, 1973, 1987, 2027, 2087
Offset: 1
Keywords
Examples
a(5) = 19 == A020652(5) = 3 (mod A038567(5) = 4) and is the least prime > a(4) = 13 with this property.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 100: # for a(1)..a(N) A:=Vector(N): A[1]:= 3: n:= 1: for d from 3 while n < N do for m from 1 to d-1 while n < N do if igcd(m,d)=1 then n:= n+1; for k from ceil((A[n-1]+1 - m)/d) do q:= d*k+m; if isprime(q) then A[n]:= q; break fi od fi od od: convert(A,list);
Comments