This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341872 #10 Mar 08 2021 16:47:17 %S A341872 1,6,1998,722484,291762942,125454173544,56146411655460, %T A341872 25832836404319152,12128921727745915062,5783583949613172902394, %U A341872 2791762868052719757442008,1360988846025232489401029220,668925190887642335984231235348,331039288912491308442251418152952 %N A341872 Coefficients of the series whose 72nd power equals E_2(x)^3/E_6(x), where E_2(x) and E_6(x) are the Eisenstein series A006352 and A013973. %C A341872 It is easy to see that E_2(x)^3/E_6(x) == 1 - 72*Sum_{k >= 1} (k - 7*k^5)*x^k/(1 - x^k) (mod 432), and also that the integer k - 7*k^5 is always divisible by 6. Hence, E_2(x)^3/E_6(x) == 1 (mod 432). It follows from Heninger et al., p. 3, Corollary 2, that the series expansion of (E_2(x)^2/E_6(x))^(1/72) = 1 + 6*x + 1998*x^2 + 722484*x^3 + 291762942* x^4 + ... has integer coefficients. %H A341872 N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="https://doi.org/10.1016/j.jcta.2006.03.018">On the Integrality of n-th Roots of Generating Functions</a>, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745. %H A341872 Wikipedia, <a href="https://en.wikipedia.org/wiki/Eisenstein_series">Eisenstein series</a> %F A341872 a(n) ~ c * exp(2*Pi*n) / n^(71/72), where c = 0.013960369132490470055158573616810629626490780934389076244815126342923645628... - _Vaclav Kotesovec_, Mar 08 2021 %p A341872 E(2,x) := 1 - 24*add(k*x^k/(1-x^k), k = 1..20): %p A341872 E(6,x) := 1 - 504*add(k^5*x^k/(1-x^k), k = 1..20): %p A341872 with(gfun): series((E(2,x)^3/E(6,x))^(1/72), x, 20): %p A341872 seriestolist(%); %Y A341872 Cf. A006352, A013973, A341871 - A341875. %K A341872 nonn,easy %O A341872 0,2 %A A341872 _Peter Bala_, Feb 22 2021