cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341873 Coefficients of the series whose 24th power equals E_2(x)^5/E_10(x), where E_2(x) and E_10(x) are the Eisenstein series A006352 and A013974.

This page as a plain text file.
%I A341873 #9 Feb 25 2021 08:28:41
%S A341873 1,6,7038,2002644,922569342,380737463400,175255606306116,
%T A341873 80315525064955440,38028486993289854966,18171889608389845598586,
%U A341873 8807723964899085718419480,4305311468773791666900669828,2122088430918938935321961736084
%N A341873 Coefficients of the series whose 24th power equals E_2(x)^5/E_10(x), where E_2(x) and E_10(x) are the Eisenstein series A006352 and A013974.
%C A341873 It is easy to see that E_2(x)^5/E_10(x) == 1 - 24*Sum_{k >= 1} (5*k - 11*k^9)*x^k/(1 - x^k) (mod 144), and also that the integer 5*k - 11*k^9 is always divisible by 6. Hence, E_2(x)^5/E_10(x) == 1 (mod 144). It follows from Heninger et al., p. 3, Corollary 2, that the series expansion of (E_2(x)^5/E_10(x))^(1/24) = 1 + 6*x + 7038*x^2 + 2002644*x^3 + 922569342*x^4 + ... has integer coefficients.
%H A341873 N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="https://doi.org/10.1016/j.jcta.2006.03.018">On the Integrality of n-th Roots of Generating Functions</a>, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
%H A341873 Wikipedia, <a href="https://en.wikipedia.org/wiki/Eisenstein_series">Eisenstein series</a>
%p A341873 E(2,x)  := 1 -  24*add(k*x^k/(1-x^k),   k = 1..20):
%p A341873 E(10,x) := 1 - 264*add(k^9*x^k/(1-x^k), k = 1..20):
%p A341873 with(gfun): series((E(2,x)^5/E(10,x))^(1/24), x, 20):
%p A341873 seriestolist(%);
%Y A341873 Cf. A006352, A013974, A341871 - A341875.
%K A341873 nonn,easy
%O A341873 0,2
%A A341873 _Peter Bala_, Feb 23 2021