This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341880 #14 Feb 16 2025 08:34:01 %S A341880 1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,6,0,0,0,4,0,0,0,0,0,0,0,16,0, %T A341880 0,0,0,0,4,0,4,0,0,0,12,0,0,0,10,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,16,1, %U A341880 0,0,12,0,0,0,4,0,12,0,0,0,0,0,40,0,0,0,6,0,0,0,4,0,0,0,28,0,0,0,16 %N A341880 Number of ordered factorizations of n into 4 factors > 1. %H A341880 Alois P. Heinz, <a href="/A341880/b341880.txt">Table of n, a(n) for n = 16..20000</a> %H A341880 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/OrderedFactorization.html">Ordered Factorization</a> %F A341880 Dirichlet g.f.: (zeta(s) - 1)^4. %F A341880 a(n) = 6 * A000005(n) - 4 * A007425(n) + A007426(n) - 4 for n > 1. %p A341880 b:= proc(n) option remember; series(x*(1+add(b(n/d), %p A341880 d=numtheory[divisors](n) minus {1, n})), x, 5) %p A341880 end: %p A341880 a:= n-> coeff(b(n), x, 4): %p A341880 seq(a(n), n=16..112); # _Alois P. Heinz_, Feb 22 2021 %t A341880 b[n_] := b[n] = Series[x*(1 + Sum[b[n/d], %t A341880 {d, Divisors[n] ~Complement~ {1, n}}]), {x, 0, 5}]; %t A341880 a[n_] := Coefficient[b[n], x, 4]; %t A341880 Table[a[n], {n, 16, 112}] (* _Jean-François Alcover_, Feb 28 2022, after _Alois P. Heinz_ *) %Y A341880 Column k=4 of A251683. %Y A341880 Cf. A000005, A007425, A007426, A070824, A074206, A200221, A341881, A341882. %K A341880 nonn %O A341880 16,9 %A A341880 _Ilya Gutkovskiy_, Feb 22 2021