This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341881 #13 Feb 16 2025 08:34:01 %S A341881 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0, %T A341881 0,0,0,0,0,0,10,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,25,0,0, %U A341881 0,0,0,0,0,0,0,0,0,10,0,0,0,5,0,0,0,0,0,0,0,20,0,0,0,0,0,0,0,15 %N A341881 Number of ordered factorizations of n into 5 factors > 1. %H A341881 Alois P. Heinz, <a href="/A341881/b341881.txt">Table of n, a(n) for n = 32..20000</a> %H A341881 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/OrderedFactorization.html">Ordered Factorization</a> %F A341881 Dirichlet g.f.: (zeta(s) - 1)^5. %F A341881 a(n) = -10 * A000005(n) + 10 * A007425(n) - 5 * A007426(n) + A061200(n) + 5 for n > 1. %p A341881 b:= proc(n) option remember; series(x*(1+add(b(n/d), %p A341881 d=numtheory[divisors](n) minus {1, n})), x, 6) %p A341881 end: %p A341881 a:= n-> coeff(b(n), x, 5): %p A341881 seq(a(n), n=32..128); # _Alois P. Heinz_, Feb 22 2021 %t A341881 b[n_] := b[n] = Series[x*(1 + Sum[b[n/d], %t A341881 {d, Divisors[n] ~Complement~ {1, n}}]), {x, 0, 6}]; %t A341881 a[n_] := Coefficient[b[n], x, 5]; %t A341881 Table[a[n], {n, 32, 128}] (* _Jean-François Alcover_, Feb 28 2022, after _Alois P. Heinz_ *) %Y A341881 Column k=5 of A251683. %Y A341881 Cf. A000005, A007425, A007426, A061200, A070824, A074206, A200221, A341880, A341882. %K A341881 nonn %O A341881 32,17 %A A341881 _Ilya Gutkovskiy_, Feb 22 2021