This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341882 #13 Feb 16 2025 08:34:01 %S A341882 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0, %T A341882 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0, %U A341882 0,0,0,0,0,0,0,0,0,0,0,0,15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6 %N A341882 Number of ordered factorizations of n into 6 factors > 1. %H A341882 Alois P. Heinz, <a href="/A341882/b341882.txt">Table of n, a(n) for n = 64..20000</a> %H A341882 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/OrderedFactorization.html">Ordered Factorization</a> %F A341882 Dirichlet g.f.: (zeta(s) - 1)^6. %F A341882 a(n) = 15 * A000005(n) - 20 * A007425(n) + 15 * A007426(n) - 6 * A061200(n) + A034695(n) - 6 for n > 1. %p A341882 b:= proc(n) option remember; series(x*(1+add(b(n/d), %p A341882 d=numtheory[divisors](n) minus {1, n})), x, 7) %p A341882 end: %p A341882 a:= n-> coeff(b(n), x, 6): %p A341882 seq(a(n), n=64..160); # _Alois P. Heinz_, Feb 22 2021 %t A341882 b[n_] := b[n] = Series[x*(1 + Sum[b[n/d], %t A341882 {d, Divisors[n]~Complement~{1, n}}]), {x, 0, 7}]; %t A341882 a[n_] := Coefficient[b[n], x, 6]; %t A341882 Table[a[n], {n, 64, 160}] (* _Jean-François Alcover_, Feb 28 2022, after _Alois P. Heinz_ *) %Y A341882 Column k=6 of A251683. %Y A341882 Cf. A000005, A007425, A007426, A034695, A061200, A070824, A074206, A200221, A341880, A341881. %K A341882 nonn %O A341882 64,33 %A A341882 _Ilya Gutkovskiy_, Feb 22 2021