cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341892 Numbers that are the sum of five fourth powers in exactly nine ways.

This page as a plain text file.
%I A341892 #14 May 10 2024 02:27:25
%S A341892 619090,775714,1100579,1179379,1186834,1243699,1357315,1367539,
%T A341892 1373859,1422595,1431234,1436419,1511299,1536019,1699234,1734899,
%U A341892 1839874,1858594,1880850,1950355,1951650,1978915,2044819,2052899,2069955,2085139,2101779,2119459,2133234
%N A341892 Numbers that are the sum of five fourth powers in exactly nine ways.
%C A341892 Differs from A341781 at term 3 because
%C A341892 954979 =  1^4 +  2^4 + 11^4 + 19^4 + 30^4
%C A341892        =  1^4 +  7^4 + 18^4 + 25^4 + 26^4
%C A341892        =  3^4 +  8^4 + 17^4 + 20^4 + 29^4
%C A341892        =  4^4 +  8^4 + 13^4 + 25^4 + 27^4
%C A341892        =  4^4 +  9^4 + 10^4 + 11^4 + 31^4
%C A341892        =  6^4 +  6^4 + 15^4 + 21^4 + 29^4
%C A341892        =  7^4 + 10^4 + 18^4 + 19^4 + 29^4
%C A341892        = 11^4 + 11^4 + 20^4 + 22^4 + 27^4
%C A341892        = 16^4 + 17^4 + 17^4 + 24^4 + 25^4
%C A341892        = 18^4 + 19^4 + 20^4 + 23^4 + 23^4.
%H A341892 David Consiglio, Jr., <a href="/A341892/b341892.txt">Table of n, a(n) for n = 1..10000</a>
%e A341892 619090 =  1^4 +  2^4 + 18^4 + 22^4 + 23^4
%e A341892        =  1^4 +  3^4 +  4^4 +  8^4 + 28^4
%e A341892        =  1^4 + 11^4 + 14^4 + 22^4 + 24^4
%e A341892        =  2^4 +  2^4 +  8^4 + 17^4 + 27^4
%e A341892        =  2^4 + 13^4 + 13^4 + 18^4 + 26^4
%e A341892        =  3^4 +  6^4 + 12^4 + 16^4 + 27^4
%e A341892        =  4^4 + 12^4 + 14^4 + 23^4 + 23^4
%e A341892        =  9^4 + 12^4 + 16^4 + 21^4 + 24^4
%e A341892        = 14^4 + 16^4 + 18^4 + 19^4 + 23^4
%e A341892 so 619090 is a term.
%o A341892 (Python)
%o A341892 from itertools import combinations_with_replacement as cwr
%o A341892 from collections import defaultdict
%o A341892 keep = defaultdict(lambda: 0)
%o A341892 power_terms = [x**4 for x in range(1, 1000)]
%o A341892 for pos in cwr(power_terms, 5):
%o A341892     tot = sum(pos)
%o A341892     keep[tot] += 1
%o A341892 rets = sorted([k for k, v in keep.items() if v == 9])
%o A341892 for x in range(len(rets)):
%o A341892     print(rets[x])
%Y A341892 Cf. A341891, A341898, A344927, A344945, A345186, A345821.
%K A341892 nonn
%O A341892 1,1
%A A341892 _David Consiglio, Jr._, Jun 04 2021