cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341895 Indices of triangular numbers that are ten times other triangular numbers.

This page as a plain text file.
%I A341895 #41 Oct 07 2022 10:14:30
%S A341895 0,4,20,39,175,779,1500,6664,29600,56979,253075,1124039,2163720,
%T A341895 9610204,42683900,82164399,364934695,1620864179,3120083460,
%U A341895 13857908224,61550154920,118481007099,526235577835,2337285022799,4499158186320,19983094049524,88755280711460,170849530073079,758831338304095,3370363382012699
%N A341895 Indices of triangular numbers that are ten times other triangular numbers.
%C A341895 Second member of the Diophantine pair (b(n), a(n)) that satisfies a(n)^2 + a(n) = 10*(b(n)^2 + b(n)) or T(a(n)) = 10*T(b(n)) where T(x) is the triangular number of x. The T(b)'s are in A068085 and the b's are in A341893.
%C A341895 Can be defined for negative n by setting a(-n) = -a(n+1) - 1 for all n in Z.
%H A341895 Vladimir Pletser, <a href="/A341895/b341895.txt">Table of n, a(n) for n = 1..1000</a>
%H A341895 Vladimir Pletser, <a href="https://www.researchgate.net/profile/Vladimir-Pletser/publication/359808848_USING_PELL_EQUATION_SOLUTIONS_TO_FIND_ALL_TRIANGULAR_NUMBERS_MULTIPLE_OF_OTHER_TRIANGULAR_NUMBERS/">Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers</a>, 2022.
%H A341895 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,38,-38,-1,1).
%F A341895 a(n) = 38*a(n-3) - a(n-6) + 18 for n > 3, with a(-2) = -21, a(-1) = -5, a(0) = -1, a(1) = 0, a(2) = 4, a(3) = 20.
%F A341895 a(n) = a(n-1) + 38*(a(n-3) - a(n-4)) - (a(n-6) - a(n-7)) for n >= 4 with a(-2) = -21, a(-1) = -5, a(0) = -1, a(1) = 0, a(2) = 4, a(3) = 20.
%F A341895 G.f.: x^2*(4 + 16*x + 19*x^2 - 16*x^3 - 4*x^4 - x^5)/(1 - x - 38*x^3 + 38*x^4 + x^6 - x^7). - _Stefano Spezia_, Feb 24 2021
%F A341895 a(n) = (A198943(n) + 1)/2 - 1. - _Hugo Pfoertner_, Feb 26 2021
%e A341895 a(2) = 4 is a term because its triangular number, T(a(2)) = 4*5 / 2 = 10 is ten times a triangular number.
%e A341895 a(4) = 38*a(1) - a(-2) + 18 = 38*0 - (-21) + 18 = 39, etc.
%p A341895 f := gfun:-rectoproc({a(-2) = -21, a(-1) = -5, a(0) = -1, a(1) = 0, a(2) = 4, a(3) = 20, a(n) = 38*a(n-3)-a(n-6)+18}, a(n), remember); map(f, [`$`(0 .. 1000)]) ; #
%t A341895 Rest@ CoefficientList[Series[x^2*(4 + 16*x + 19*x^2 - 16*x^3 - 4*x^4 - x^5)/(1 - x - 38*x^3 + 38*x^4 + x^6 - x^7), {x, 0, 30}], x] (* _Michael De Vlieger_, May 19 2022 *)
%Y A341895 Cf. A341893, A068085, A166477 (n=10).
%Y A341895 Cf. A336623, A336624, A336626, A336625, A053141, A001652, A075528, A029549, A061278, A001571, A076139, A076140, A077259, A077262, A077260, A077261, A077288, A077291, A077289, A077290, A077398, A077401, A077399, A077400, A000217.
%K A341895 easy,nonn
%O A341895 1,2
%A A341895 _Vladimir Pletser_, Feb 23 2021