cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341898 Numbers that are the sum of five fourth powers in exactly ten ways.

This page as a plain text file.
%I A341898 #15 May 10 2024 02:26:44
%S A341898 954979,1205539,1574850,1713859,1863859,1877394,1882579,2071939,
%T A341898 2109730,2225859,2288179,2419954,2492434,2495939,2605314,2711394,
%U A341898 2784499,2835939,2847394,2880994,2924674,3007474,3061939,3071379,3074179,3117235,3127219,3174834,3190899
%N A341898 Numbers that are the sum of five fourth powers in exactly ten ways.
%C A341898 Differs at term 5 because
%C A341898 1801459 =  1^4 +  4^4 +  5^4 + 28^4 + 33^4
%C A341898         =  1^4 +  4^4 + 12^4 + 23^4 + 35^4
%C A341898         =  1^4 +  7^4 + 16^4 + 30^4 + 31^4
%C A341898         =  1^4 + 16^4 + 18^4 + 19^4 + 35^4
%C A341898         =  3^4 +  6^4 + 18^4 + 21^4 + 35^4
%C A341898         =  5^4 +  7^4 + 19^4 + 24^4 + 34^4
%C A341898         =  5^4 +  9^4 + 14^4 + 29^4 + 32^4
%C A341898         =  7^4 +  9^4 + 16^4 + 25^4 + 34^4
%C A341898         =  7^4 + 14^4 + 16^4 + 21^4 + 35^4
%C A341898         =  8^4 +  9^4 + 20^4 + 29^4 + 31^4
%C A341898         = 10^4 + 19^4 + 19^4 + 21^4 + 34^4.
%H A341898 David Consiglio, Jr., <a href="/A341898/b341898.txt">Table of n, a(n) for n = 1..10000</a>
%e A341898 954979 =  1^4 +  2^4 + 11^4 + 19^4 + 30^4
%e A341898        =  1^4 +  7^4 + 18^4 + 25^4 + 26^4
%e A341898        =  3^4 +  8^4 + 17^4 + 20^4 + 29^4
%e A341898        =  4^4 +  8^4 + 13^4 + 25^4 + 27^4
%e A341898        =  4^4 +  9^4 + 10^4 + 11^4 + 31^4
%e A341898        =  6^4 +  6^4 + 15^4 + 21^4 + 29^4
%e A341898        =  7^4 + 10^4 + 18^4 + 19^4 + 29^4
%e A341898        = 11^4 + 11^4 + 20^4 + 22^4 + 27^4
%e A341898        = 16^4 + 17^4 + 17^4 + 24^4 + 25^4
%e A341898        = 18^4 + 19^4 + 20^4 + 23^4 + 23^4
%e A341898 so 954979 is a term.
%o A341898 (Python)
%o A341898 from itertools import combinations_with_replacement as cwr
%o A341898 from collections import defaultdict
%o A341898 keep = defaultdict(lambda: 0)
%o A341898 power_terms = [x**4 for x in range(1, 1000)]
%o A341898 for pos in cwr(power_terms, 5):
%o A341898     tot = sum(pos)
%o A341898     keep[tot] += 1
%o A341898 rets = sorted([k for k, v in keep.items() if v == 10])
%o A341898 for x in range(len(rets)):
%o A341898     print(rets[x])
%Y A341898 Cf. A341892, A341897, A344929, A345188, A345822.
%K A341898 nonn
%O A341898 1,1
%A A341898 _David Consiglio, Jr._, Jun 04 2021