This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341901 #19 Jun 01 2023 01:55:38 %S A341901 9,9,7,9,9,5,6,3,2,7,3,0,7,6,2,1,5,6,8,6,4,6,7,6,1,3,2,1,0,5,0,9,9,9, %T A341901 9,6,3,2,0,9,4,1,8,4,8,0,5,1,8,2,1,1,9,1,2,3,7,3,6,7,4,5,1,3,3,7,5,2, %U A341901 3,0,1,0,5,1,9,4,1,1,4,1,8,2,4,3,9,1,7 %N A341901 Decimal expansion of 1/zeta(9). %C A341901 1/zeta(9) is the probability that 9 randomly selected numbers will be coprime. %H A341901 Karl-Heinz Hofmann, <a href="/A341901/b341901.txt">Table of n, a(n) for n = 0..10000</a> %H A341901 Wikipedia, <a href="https://en.wikipedia.org/wiki/Riemann_zeta_function">Riemann zeta function</a>. %F A341901 Equals 1/A013667. %F A341901 From _Amiram Eldar_, Jun 01 2023: (Start) %F A341901 Equals Sum_{k>=1} mu(k)/k^9, where mu is the Möbius function (A008683). %F A341901 Equals Product_{p prime} (1 - 1/p^9). (End) %e A341901 0.997995632730762156864676132105099996320941848... %t A341901 RealDigits[1/Zeta[9], 10, 100][[1]] %o A341901 (PARI) 1/zeta(9) %Y A341901 Cf. A008683, A013667, A059956, A088453, A215267, A343308, A343359, A343367, A342683. %K A341901 nonn,cons %O A341901 0,1 %A A341901 _Karl-Heinz Hofmann_, Jun 04 2021