This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341908 #15 Feb 16 2025 08:34:01 %S A341908 7,7,7,5,0,4,6,3,4,1,1,2,2,4,8,2,7,6,4,1,7,5,8,6,5,4,5,4,2,5,7,1,0,5, %T A341908 0,7,1,9,2,4,7,7,2,9,6,2,2,9,0,0,0,8,6,9,1,7,9,4,9,4,5,4,1,0,6,9,9,6, %U A341908 6,8,4,8,8,6,2,4,9,8,0,3,7,6,8,7,7,1,1 %N A341908 Decimal expansion of Integral_{x=0..1} x/(exp(x)-1) dx. %D A341908 Alvaro Meseguer, Fundamentals of Numerical Mathematics for Physicists and Engineers, Wiley, 2020, Chapter 4, exercise 12, p. 128. %D A341908 John Michael Rassias, Geometry, Analysis, and Mechanics, World Scientific, 1994, p. 14. %H A341908 M. Abramowitz and I. A. Stegun, eds., <a href="https://www.math.ubc.ca/~cbm/aands/page_998.htm">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, p. 998. %H A341908 Mathematics MI, <a href="https://www.youtube.com/watch?v=Ru5tQzg6jz8">Integral x/(e^x - 1) from 0 to 1</a>, YouTube video, May 8 2021. %H A341908 Voodooguru, <a href="https://voodooguru23.blogspot.com/2021/05/collaboration-between-integration-and.html">Collaboration between Integration and Summation</a>, Mathematical Meanderings, May 9 2021. %H A341908 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DebyeFunctions.html">Debye Functions</a>. %H A341908 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Dilogarithm.html">Dilogarithm</a>. %H A341908 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Polylogarithm.html">Polylogarithm</a>. %H A341908 Wikipedia, <a href="https://en.wikipedia.org/wiki/Debye_function">Debye function</a>. %H A341908 Wikipedia, <a href="https://en.wikipedia.org/wiki/Polylogarithm">Polylogarithm</a>. %H A341908 Wikipedia, <a href="https://en.wikipedia.org/wiki/Spence%27s_function">Spence's function</a>. %F A341908 Equals D_1(1) = Sum_{k>=0} A120082(k)/A120083(k), where D_n(x) are the Debye functions. %F A341908 Equals Li_2(1-1/e) = -1/2 - Li_2(1-e) = Pi^2/6 - 1 + log(e-1) - Li_2(1/e), where Li_2(x) is the dilogarithm function. %F A341908 Equals Sum_{k>=0} B(k)/(k+1)! = -1/2 + Sum_{k>=0} (-1)^k*B(k)/(k+1)! = -1/4 + Sum_{k>=0} B(2*k)/(2*k+1)!, where B(k) is the k-th Bernoulli number. %F A341908 Equals Sum_{k>=1} (1 - (k+1)*exp(-k))/k^2. %e A341908 0.77750463411224827641758654542571050719247729622900... %p A341908 evalf(-dilog(exp(1))-1/2, 140); # _Alois P. Heinz_, Jun 04 2021 %t A341908 RealDigits[PolyLog[2, 1-1/E], 10, 100][[1]] %o A341908 (PARI) intnum(x=0, 1, x/(exp(x)-1)) \\ _Michel Marcus_, Jun 04 2021 %Y A341908 Cf. A027641, A027642, A120082, A120083. %K A341908 nonn,cons %O A341908 0,1 %A A341908 _Amiram Eldar_, Jun 04 2021