This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341911 #15 Feb 24 2021 16:25:31 %S A341911 0,1,3,2,7,4,6,5,15,8,12,9,14,11,13,10,31,16,24,17,28,19,23,18,30,25, %T A341911 27,20,29,22,26,21,63,32,48,33,56,35,39,34,60,47,49,36,51,38,40,37,62, %U A341911 55,57,44,59,46,50,41,61,52,54,43,58,45,53,42,127,64,96 %N A341911 Lexicographically earliest sequence of distinct nonnegative integers such that for any n >= 0, the number of ones in the binary expansion of n equals the number of runs in the binary expansion of a(n). %C A341911 This sequence is a permutation of the nonnegative integers with inverse A341910. %H A341911 Rémy Sigrist, <a href="/A341911/b341911.txt">Table of n, a(n) for n = 0..8191</a> %H A341911 Rémy Sigrist, <a href="/A341911/a341911.png">Colored scatterplot of the first 2^16 terms</a> (where the color is function of A000120(n)) %H A341911 Rémy Sigrist, <a href="/A341911/a341911.gp.txt">PARI program for A341911</a> %H A341911 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A341911 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A341911 A000120(n) = A005811(a(n)). %F A341911 a(n) < 2^k for any n < 2^k. %e A341911 The first terms, in decimal and in binary, are: %e A341911 n a(n) bin(n) bin(a(n)) %e A341911 -- ---- ------- --------- %e A341911 0 0 0 0 %e A341911 1 1 1 1 %e A341911 2 3 10 11 %e A341911 3 2 11 10 %e A341911 4 7 100 111 %e A341911 5 4 101 100 %e A341911 6 6 110 110 %e A341911 7 5 111 101 %e A341911 8 15 1000 1111 %e A341911 9 8 1001 1000 %e A341911 10 12 1010 1100 %t A341911 Block[{a = {0}, k}, Do[k = 1; While[Nand[FreeQ[a, k], Length[Split@ IntegerDigits[k, 2]] == #], k++] &@ DigitCount[i, 2, 1]; AppendTo[a, k], {i, 66}]; a] (* _Michael De Vlieger_, Feb 24 2021 *) %o A341911 (PARI) See Links section. %Y A341911 Cf. A000120, A005811, A298847, A341910 (inverse). %K A341911 nonn,look,base %O A341911 0,3 %A A341911 _Rémy Sigrist_, Feb 23 2021